A guide to managing weeds, insects, and diseases in corn, soybean, forages, and small grains

Bryan Jensen
Patrick J. Liesch
Glenn Nice
Mark Renz
Damon Smith
Pest Management Mobile

Tired of flipping through the pages to find all the product information you need?

Pest Management Mobile (PMM) is your answer! This interactive tool allows you to access the same information found in this book from any smartphone, tablet, laptop, or computer.

Features include:

- Easy access to critical product information, such as rainfastness, crop rotation, and re-entry interval.
- Ability to search for products that are effective on identified pests. Users can select up to three pests, and PMM will identify product(s) that are effective against all of them. Results will also include links on how to use the product in specific crops.

Consider PMM to be your quick guide for pest management, a handy reference you can keep in your pocket.

And there’s no app to download: visit pmm.uwex.edu for a test drive!

Pesticide references and updates

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over other similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Note also that this publication is not a complete list of all pesticide labels. Several pesticides are marketed in numerous formulations, and the common names of their active ingredients (e.g., atrazine, glyphosate, 2,4-D) are generally recognizable. In previous years, these pesticides were referenced by their common names. The publication now only refers to specific products and avoids making general comments with respect to an active ingredient. This change was made because the manufacturer decides many of a product’s restrictions and regulations. In many cases, various registrants for the same product have the same regulations and restrictions, but in an increasing number of cases, those regulations and restrictions differ. To avoid any confusion, products are now only listing the primary registrant(s) for products. Much of the information will be correct across multiple manufacturers, but please refer to the label if using a product different than the ones referenced in this document.

For updates throughout the growing season, consult the Wisconsin Crop Manager newsletter, available online at ipcm.wisc.edu/wcm

Current pesticide labels are available online at www.cdms.net/LabelsMds/LMDefault.aspx

Measurements used in this publication vary according to common usage. In most cases, U.S. customary units (ounces, miles, etc.) are used, and values are expressed in decimals rather than fractions. In a few instances, metric units and/or fractions have been retained to avoid confusion.
Contents

1 Principles of pest management 1

Pest management and pesticides 2
Pest management and pesticides 2
Integrated pest management ... 2
Federal pesticide-use law ... 2
Wisconsin’s training & certification program ... 2
Table 1-1. Examples of agricultural chemicals subject to Title III of SARA .. 3
Wisconsin pesticide laws and regulations ... 3
Pesticides & community right to know .. 3
Worker protection standard for agricultural pesticides 3
Oral notification & posting ... 4
Restricted entry interval .. 4
Pesticide toxicity .. 4
Table 1-2. Toxicity categories of pesticides .. 5
Pesticide safety .. 5
Pesticide accidents .. 5
Pesticides & endangered species .. 6
Pesticide drift ... 6
Pesticides and groundwater ... 7
Calibrating pesticide equipment ... 7
Cleaning pesticide sprayers ... 7
Preparing pesticide sprayers for storage ... 8
Pesticide disposal .. 8

Weed management principles for all crops... 9
Selecting a weed management program .. 9
When to apply herbicides ... 9
Can herbicide rates be reduced? .. 9
Mixing herbicides .. 10
Herbicide/fertilizer combinations .. 10
Weather and herbicides ... 10
Herbicide residues in soil ... 11
Herbicides and conservation tillage ... 11
Herbicide-resistant weeds ... 11
Table 1-3. Listing of herbicides by mode of action and risk of developing resistant biotypes 12
3 Soybean pest management 107

Soybean weed management 108
Burndown herbicides for no-till soybean ... 108
Soybean herbicides ... 108
Table 3-1a. Weed control ratings of preplant-incorporated and preemergence soybean herbicides 110
Table 3-1b. Weed control ratings of soybean postemergence herbicides 112
Table 3-2. Rate equivalents of soybeans herbicide premixes .. 125
Table 3-3. Forage and grain harvest intervals for soybean herbicides 126
Table 3-4. Rainfree period and adjuvants required for postemergence soybean herbicides 127

Soybean insect management 128
Insect pests .. 128
Table 3-5. Beanleaf beetle threshold for overwintering adults (per plant) in soybean 129
Table 3-6a. Bean leaf beetle threshold for first generation adults 129
Table 3-6b. Bean leaf beetle threshold for second generation adults 129
Table 3-7. Treatment decision guidelines for two-spotted spider mites 133

Soybean disease management 148
Resistant or tolerant varieties ... 148
Crop management .. 148
Fungicides ... 148
Soybean diseases .. 149
Table 3-8. Fungicides for treating soybean seeds for protection against Fusarium, Rhizoctonia, Pythium, Phytophthora, and Phomopsis ... 150
Table 3-10. Fungicide efficacy ratings for foliar soybean diseases in Wisconsin 156
Table 3-11. Management recommendations for Sclerotinia stem rot (white mold) 160

4 Forage and pasture pest management ... 161

Forage and pasture weed management ... 162
Forage legumes .. 162
Establishing forage legumes without a cover crop (direct seeding) 162
Table 4-1. Impact of common weeds on forage quality ... 162
Table 4-2a. Seedling legume tolerance and herbicide effectiveness on weeds commonly found in establishing legumes seeded without a cover crop .. 163
Table 4-2b. Cautionary statements for herbicides of commonly found weeds in establishing legumes seeded without a cover crop .. 163
Herbicides for establishing alfalfa .. 164
Summer seedings .. 166
Weed management in established forage legumes .. 166
Herbicides for established alfalfa ... 167
Weed and brush control in grass pastures ... 168
Table 4-3a. Legume tolerance and herbicide effectiveness on weeds commonly found in established legume stands .. 169
Table 4-3b. Cautionary statements for herbicides of commonly found weeds in established legume stands ... 169
Table 4-4. Herbicide effectiveness on weeds commonly found in pastures 172
Pasture renovation ... 174
Table 4-5. Harvest and/or grazing restrictions for herbicides registered for use in forages and pastures .. 175

Forage and pasture insect management .. 177
Reducing insecticide hazards to bees .. 177
Table 4-6. Periods to scout for insect pests of forages ... 177
Alfalfa insects .. 178
Table 4-7. Treatment thresholds for potato leafhoppers on alfalfa 179
Table 4-8. Insecticide suggestions for birdsfoot trefoil, clover, pasture, and rangeland 180
Insect pests of birdsfoot trefoil, clover, pasture .. 180
Insecticide suggestions for alfalfa .. 182
Forage disease management194
Alfalfa leaf and stem diseases ...194
Alfalfa seedling diseases ..194
Alfalfa root and crown diseases ..194
Table 4-9. Fungicides registered for foliar alfalfa diseases in Wisconsin195
Table 4-10. Probability and occurrence of alfalfa diseases in stands of different ages196
Table 4-11. Seed treatment fungicides for alfalfa diseases ...197
Red clover diseases ..198
Diseases of forage grasses ..198

5 Small grains pest management 199

Small grains weed management200
Small grains with a legume seeding ..200
Figure 5-1. Herbicide application periods at various growth stages of small grains (Feekes scale)201
Choosing between Buctril and MCPA ...201
Table 5-1. Crop registration, tolerance, and herbicide effectiveness on weeds commonly found in small grains ..202
Small grains without a legume seeding ...203
Table 5-2. Harvest and/or grazing restrictions for herbicides registered for use in small grains206

Small grains insect management207
Insect pests of small grains ...207
Table 5-3. Treatment thresholds for aphids to prevent direct plant damage (not disease reduction) and subsequent grain yield loss ...207

Small grains disease management210
Small grain diseases ..210
Table 5-4. Fungicides for control of foliar diseases of small grains ...212
Table 5-5. Seed treatment fungicides for small grains ..218

6 Perennial weed management 219

Perennial weed management220
Quackgrass ..220
Wirestem muhly ..221
Yellow nutsedge ..221
Perennial broadleaf control in glyphosate-resistant crops ..222
Canada thistle in conventional grain crops and pastures ... 222
Hemp dogbane in conventional crops ... 223
Table 6-1. Summary of herbicides for perennial weed suppression in corn and soybeans .. 224

7 Stored grain insect management .. 227

Stored grain insect management 228

Bin preparation .. 228
Empty bin treatments ... 228
Grain protection with insecticides (direct grain treatment) 229
Grain surface treatments (top-dressing) ... 229
Indian meal moth .. 230
Grain inspection ... 230
Safety precautions ... 231
Controlling established infestations ... 231
Table 7-1. The number of live insects required for Federal Grain Inspection Service designations as infested ... 231
Fumigation .. 232

8 Appendix .. 233

Table 8-1. Herbicide products and related information .. 234
Table 8-2. Insecticide products and related information .. 239
Table 8-3. Fungicide products and related information .. 242
Table 8-4. Planting interval for rotational crops .. 246
Table 8-5. Herbicide effectiveness on listed invasive weeds in CRP fields 255
Additional resources ... 256
Related UW-Extension websites .. 256
Pest management and pesticides

Controlling a pest—be it a weed, insect, or disease—is only part of a total pest management program. Pest control is a corrective measure; you use pesticides or some other control method to reduce a damaging (or potentially damaging) pest population. Pest management, however, includes preventative measures as well.

The primary goal of your pest management program is to maintain pest damage at an acceptable level. Eradication of pests is rarely possible or feasible. In fact, our attempts at eradication may create more problems than they solve (pesticide resistance, secondary pest outbreaks, etc.). Pesticides are vital, effective tools for agriculture and for the production of our nation’s food and fiber, but they can no longer be viewed as a cure-all for all of our pest problems. Rather, they must be viewed in the context of a total pest management program.

Integrated pest management

Integrated Pest Management (IPM) is the coordinated use of multiple pest control methods. By becoming familiar with the crop, the pest, and all available control tactics, you can develop and implement a sound IPM program that will help you apply pesticides only when necessary.

To help train growers, field scouts, and consultants, the University of Wisconsin conducts field scout training classes each year in Madison, Steven’s Point and River Falls, and a Wisconsin crop diagnosis training program at the Agricultural Research Station in Arlington, WI. For more information about the Wisconsin IPM program, contact your county Extension agent or call the state IPM coordinator at 608-263-4073.

Federal pesticide-use law

When Congress amended the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) in 1972, it included a mandate for the United States Environmental Protection Agency (EPA) to evaluate all new and existing pesticide products for potential harm they may cause. It also made it illegal to use, except as provided by FIFRA, any pesticide in a manner inconsistent with its labeling. Deviations from the label not recognized by FIFRA are a violation of the law.

The Food Quality Protection Act (FQPA) of 1996 strengthens the system that regulates pesticide residues on food. Recognizing that pesticide residues are present in more sources than just food, the FQPA sets limits on the total exposure from residues found in food, drinking water, and non-dietary sources (such as household, landscape, and pet uses). The more uses a particular pesticide has, the greater the chance its total exposure will be met and, thus, some or all of its uses canceled.

If, during the pesticide registration process, the EPA finds a product to generally cause unreasonable adverse effects on the environment, including injury to the applicator, it will be classified as restricted use. Because restricted-use products (RUP) can be used only by certified applicators, the FIFRA amendments also call for each state to develop a program for training and certifying pesticide applicators. The certification program is designed to ensure that users of restricted-use products are properly qualified to handle and apply these materials safely and efficiently. A current list of restricted-use pesticides registered for use in Wisconsin may be downloaded from the Pesticide Applicator Training (PAT) website http://ipcm.wisc.edu/pat/download/download/RUP.pdf

Wisconsin’s training & certification program

In Wisconsin, responsibility for training lies with the University of Wisconsin-Extension’s Pesticide Applicator Training (PAT) program, while actual certification is the responsibility of the Wisconsin Department of Agriculture, Trade, and Consumer Protection (DATCP). The Wisconsin Pesticide Law requires that all commercial applicators for hire participate in the training and certification process if they intend to use any pesticide in the state of Wisconsin, whether or not it is restricted use.

The selection, use, and potential risks of pesticides vary depending on the method of application and what it is you want to protect from pests. Therefore, there is a separate training manual and certification exam for 21 pest control categories, including categories for agricultural producers, the agricultural industry (10 categories), use in and around commercial and residential buildings (6 categories), use in right-of-way and surface waters (3 categories), and preserving wood. Certification is valid for 5 years, after which you can recertify by passing a new exam that is based on a revised training manual.

The regulated community, including pesticide manufacturers, dealers and applicators, supports the training and certification as a way to protect people and the environment while ensuring that pesticides remain an option in pest management. The process provides a base training for all commercial applicators, including an understanding of compliance and
Principles of pest management

Forages & pastures

Soybean

Stored grain

Small grains

Perennial weeds

Appendix

Corn

Safety. We encourage all applicators to take advantage of the training and certification process, whether or not you use restricted-use pesticides. For more information about the Wisconsin PAT program, contact your county Extension agent or visit ipcm.wisc.edu/pat

For information on Wisconsin's licensing and certification program, visit https://datcp.wi.gov/Pages/Licenses_Permits/PrivateApplicator.aspx

Wisconsin pesticide laws and regulations

Operating under the provisions of the Wisconsin Pesticide Law and Administrative Rule, Chapter ATCP 29 (Register, April 2009), DATCP has primary responsibility for pesticide use and control in the state. The Wisconsin Department of Natural Resources (DNR) has responsibility for pesticide use involving “waters of the state,” the control of birds and mammals, and pesticide and container disposal. Wisconsin Emergency Management (WEM) has responsibility for helping communities evaluate their preparedness for responding to accidental releases of hazardous compounds, including pesticides, under Title III of the EPA’s Superfund Amendments and Reauthorization Act (SARA). The Wisconsin Department of Transportation (WisDOT) has responsibility for regulating the transportation of pesticides listed as hazardous materials (shipping papers, vehicle placarding, etc.) and for issuing commercial driver’s licenses. It is your responsibility to become familiar with all pertinent laws and regulations affecting pesticide use in Wisconsin. To see if a specific pesticide is regulated by WisDOT, look in the Transportation section on the Safety Data Sheet (SDS) in question.

Pesticides & community right to know

To help communities evaluate their preparedness for responding to chemical spills, Congress passed the Emergency Planning and Community Right-to-Know Act (EPCRA). This law is part of a much larger legislation called the Superfund Amendments and Reauthorization Act (SARA) and is often referred to as Title III of SARA. Title III sets forth requirements for reporting of hazardous substances stored in the community and for developing an emergency response plan.

The first step in emergency planning is to know which chemicals can cause health problems and environmental damage if accidentally released. The EPA has prepared a list of such chemicals and calls them extremely hazardous substances. These substances are subject to emergency planning and the threshold planning quantity (TPQ), the smallest amount of a substance that must be reported. Some of the chemicals listed are commonly used in agricultural production (see table 1-1).

A complete list of EPA’s extremely hazardous substances is available from your county’s Local Emergency Planning Committee (LEPC). For a list of county LEPC directors in the state of Wisconsin, visit: emergencymanagement.wi.gov/counties/county_directors.aspx

Any facility, including a farm, that produces, uses, or stores any of these substances in a quantity at or greater than their threshold planning quantity must notify the WEM and their LEPC that it is subject to the emergency planning notification requirements of Title III of SARA.

In addition to emergency planning notification, agricultural service businesses with one or more employees are subject to community right-to-know reporting requirements: submission of the Safety Data Sheet (SDS) and submission of Tier II inventory forms. Tier II forms request specific information on each hazardous chemical stored at or above its threshold.

Worker protection standard for agricultural pesticides

The federal Worker Protection Standard (WPS) for Agricultural Pesticides took effect January 1, 1995 and revised in 2014. Its purpose is to reduce the risk of employee exposure to pesticides. You are subject to the WPS if you have at least one nonfamily employee who is involved in the production of agricultural plants in a nursery, greenhouse, forest, or farming operation.

The WPS requires employers to do the following:

- Display pesticide safety information in a central location.
- Annually train uncertified workers and handlers on general pesticide safety principles.
- Provide personal protective clothing and equipment to employees.

Table 1-1. Examples of agricultural chemicals subject to Title III of SARA

<table>
<thead>
<tr>
<th>Active ingredient</th>
<th>Trade name</th>
<th>Threshold planning quantity (lb or gal of product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>anhydrous ammonia</td>
<td>—</td>
<td>610 lb</td>
</tr>
<tr>
<td>azinphos-methyl</td>
<td>Guthion Solupak</td>
<td>20 lb</td>
</tr>
<tr>
<td>dimethoate</td>
<td>Dimethoate 4EC</td>
<td>125 gal*</td>
</tr>
<tr>
<td>paraquat</td>
<td>Gramoxone SL</td>
<td>5 gal</td>
</tr>
<tr>
<td>phorate</td>
<td>Thimet 20G</td>
<td>50 lb</td>
</tr>
<tr>
<td>terbufos</td>
<td>Counter 20G</td>
<td>500 lb*</td>
</tr>
</tbody>
</table>

*Listed TPQ with the EPA, but not reported on SDS.
• Provide a decontamination site (water, soap, towels, and coveralls).
• Provide transportation to an emergency medical facility for employees who are poisoned or injured by pesticide exposure.
• Provide notification to employees about pesticide applications (see below).
• Provide access to Safety Data Sheets (SDS). Most agricultural product SDS can be downloaded from www.cdms.net
• Assure that their applicators do not apply pesticides in a manner that put people at risk.

The WPS was reviewed in 2014 and new rules were proposed in 2015. Those rule changes go into effect January 2nd 2017 and 2018. To provide a new How to Comply Manual and training materials for WPS, the Pesticide Educational Recourse Collaborative (PERC) was formed. The How to Comply Manual is anticipated by October 2016. To obtain these items go to the PERC web site, http://www.pesticideresources.org/index.html

Oral notification & posting

The WPS requires employers to give notice of pesticide applications to all workers who will be in a treated area or walk within a 1/4 mile of a treated area during the pesticide application or during the restricted entry interval (described in the next section). Notification may either be oral warnings or posting of warning signs at entrances to treated sites; both are necessary if the label requires dual (oral and posting) notification. A current list of dual-notification pesticides registered for use in Wisconsin is available at ipcm.wisc.edu/pat/download/download/Dual-Notice_2014.pdf

Wisconsin’s ATCP 29 posting rule is designed to protect the general public as well as workers. Thus, it requires posting of areas treated with pesticides having a dual notification statement or, for nonagricultural pesticide applications, if the label prescribes a restricted entry interval for that particular application. Refer to On-Farm Posting of Pesticide-Treated Sites in Wisconsin, available at ipcm.wisc.edu/pat/download/download/OFPost98.pdf for a flowchart guiding users through a series of questions to determine when posting of treated sites is needed, what warning sign to use, and where the sign should be located. Also covered are the separate posting requirements for chemigation treatments. This publication is available from your county Extension office or online at ipcm.wisc.edu/pat (search for “On-farm posting”). An online posting tool is also available at ipcm.wisc.edu/tools/Posting

Restricted entry interval

A restricted entry interval (REI) is the length of time that must expire after the pesticide application before people can safely enter the treated site without using personal protective equipment. Pesticide residues on a treated crop or in a treated area may pose a significant hazard to workers or others who enter the area after treatment. Therefore, nearly all pesticides affected by the WPS (see above) have an REI (see appendix table 1a-c). Check the Agricultural Use Requirements section on the label for the specific REI for your product. These intervals must be strictly observed. Signs will now have to be posted during the Restricted Entry Interval (REI) of any product with an REI of 48 hours or more in outdoor production and 4 hours in indoor production is used.

Pesticide toxicity

There are four common ways in which pesticides enter the human body: through the skin (dermal), the mouth (oral), the lungs (inhalation), and the eyes. Absorption through the skin is the most common route of poisoning of agricultural workers. Perhaps the greatest hazard for the applicator is in loading and mixing the pesticide concentrate, which presents a significant risk of exposure to the chemical in its most toxic form. Although hazards associated with the actual application are frequently much less severe, they can still be substantial, especially if there is significant drift or if appropriate precautions are ignored. A pesticide may be toxic as a result of exposure to a single dose (acute toxicity) or as a result of repeated exposures over time (chronic toxicity).

Acute toxicities are normally expressed as the amount of pesticide required to kill 50% of a population of test animals (usually rats or rabbits). For oral and dermal exposure, this is referred to as the LD50 or “lethal dose to 50%” in milligrams of toxicant per kilogram of body weight (mg/kg). For inhalation exposure, it is expressed as the LC50 or “lethal concentration to 50%” in parts per million (ppm) of toxicant in the total volume of air when the toxicant is a gas or vapor, and in milligrams per liter (mg/L) of air when the toxicant is a dust or mist. Pesticides with greater acute toxicities have lower LD50 and/or LC50 values; that is, it takes less of the chemical to kill 50% of the test population.

Labels indicate the relative level of acute toxicity through signal words and symbols (see table 1-2). The toxicity category is assigned based on the highest measured toxicity, be it oral, dermal, or inhalation; effects on the eyes and external injury to the skin are also considered.

In the event of human pesticide poisoning, the pesticide label is your first source of first-aid information. Always bear in mind, however, that first-aid response to pesticide exposure is not a substitute for professional medical help. Seek medical attention promptly and always be sure that the label or labeled container is given to the doctor. The product’s Safety Data Sheet (SDS) is a more technical document than the
label, and it often contains additional treatment instructions for the attending medical professional.

Poison Control Center (1-800-222-1222). You may call the Poison Control Center at any hour for information regarding proper treatment of pesticide poisoning. While hospitals and medical facilities may have some information, the Poison Control Center has the most complete and current files, and their personnel are specifically trained to deal with poison cases.

Most labels also list a phone number that you (or medical personnel) can call for specific information on poisoning (or other accidents) involving that particular product.

Pesticide safety
Before you handle pesticides, stop and read the label. Labels contain human safety precaution statements and list the specific personal protective clothing and equipment that you need to wear. Some of the following may be label requirements; others are common-sense guidelines that will help minimize pesticide exposure to you, your co-workers, and your family and neighbors.

- Wear a long-sleeved shirt, long pants, shoes, and socks when handling pesticides.
- Wear overalls (fabric or chemical-resistant) over your work clothes for an added layer of protection.
- The label will specify the type of chemical-resistant gloves to wear whenever you work with pesticides.
- Wear chemical-resistant footwear, gloves, eyewear, and a respirator (if the label requires one) when mixing, loading, or applying pesticides.
- If you wear fabric overalls, also wear a chemical-resistant apron when mixing and loading pesticides.
- Stand in the crosswind when mixing or loading pesticides.
- Never apply pesticides when there is the likelihood of significant drift.
- Never leave a spray tank containing a pesticide unattended.
- Do not allow back siphoning into the water source.
- Never eat, drink, or smoke when handling pesticides.
- Wash hands thoroughly after handling pesticides.
- If you splash pesticide on yourself, remove contaminated clothing immediately and wash yourself thoroughly.
- Wash contaminated clothes separately from other household laundry. If work clothes are saturated, for example, if they’ve been spilled on, discard them.
- Keep pesticides in original containers.
- Store and lock pesticides out of the reach of children.
- Observe restricted entry intervals on a treated crop or area.

Pesticide accidents
Pesticide spills. Regardless of the magnitude of a spill, the objectives of a proper response are the same: you must control the spill, you must contain it, and you must clean it up. A thorough knowledge of appropriate procedures will allow you to minimize the potential for adverse effects.

Spills of any compound need to be reported to the DNR. However, you do not need to report the spill if it is completely confined within an impervious secondary containment and the spilled amount can be recovered with no discharge to the environment. On the other hand, a spill of any amount is reportable if it occurred outside of secondary containment and it harmed, or threatens to harm, human health or the environment (e.g., back siphoning). The spill is exempt from the

Table 1-2. Toxicity categories of pesticides [40 CFR Ch. 1 156.62]

<table>
<thead>
<tr>
<th>Measure of toxicity</th>
<th>Toxicity</th>
<th>Moderate</th>
<th>Slight</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral LD₅₀ (mg/kg)</td>
<td>0–50</td>
<td>50–500</td>
<td>500–5,000</td>
<td>>5,000</td>
</tr>
<tr>
<td>Dermal LD₅₀ (mg/kg)</td>
<td>0–200</td>
<td>200–2,000</td>
<td>2,000–20,000</td>
<td>>20,000</td>
</tr>
<tr>
<td>Inhalation LC₅₀</td>
<td>0–200</td>
<td>200–2,000</td>
<td>2,000–20,000</td>
<td>>20,000</td>
</tr>
<tr>
<td></td>
<td>0–0.2</td>
<td>0.2–2</td>
<td>2–20</td>
<td>>20</td>
</tr>
<tr>
<td>Eye effects</td>
<td>Corrosive</td>
<td>Irritation persists for 7 days</td>
<td>Irritation reversible within 7 days</td>
<td>No irritation</td>
</tr>
<tr>
<td>Skin effects</td>
<td>Corrosive</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
</tr>
<tr>
<td>Signal word</td>
<td>DANGER²</td>
<td>WARNING</td>
<td>CAUTION</td>
<td>CAUTION</td>
</tr>
</tbody>
</table>

Abbreviations: mg/kg = milligrams per kilogram; mg/l = milligrams per liter; ppm = parts per million; < = less than; > = greater than

² Products assigned to Category I due to oral, inhalation, or dermal toxicity (as distinct from eye and local skin effects) must also have the word “poison” and the skull and crossbones symbol on the label.
DNR reporting requirements if the following are all met:
• You deem the spill will not harm, or threaten to harm, human health or the environment; AND
• The amount spilled would cover less than 1 acre if applied at labeled rates; AND
• If a SARA pesticide, it is less than the reportable quantity.

Reportable spills involving SARA substances (see “Pesticides and Community Right to Know,” page 3) are also to be reported to the WEM and to your LEPC. To simplify emergency notification requirements to state agencies, call the WEM 24-hour spill hotline (1-800-943-0003) whenever a spill of any compound occurs. Calling this hotline will not, however, remove your responsibility of notifying your LEPC.

Spills of some compounds may require that you notify federal authorities by calling the National Response Center (1-800-424-8802). Your call to the WEM spill hotline should provide you with assistance in determining whether federal authorities need to be notified.

Pesticide fires. In the event of a fire, isolate the entire area and clear all personnel to a safe distance upwind from smoke and fumes. Always inform the fire department of the nature of the pesticides involved and of any specific information that may help them in fighting the fire and protecting themselves and others from injury. For information on cleanup and decontamination, contact WEM and the pesticide manufacturer(s).

Livestock poisoning. When you suspect animal poisoning by pesticides, first call your veterinarian. If the cause of poisoning cannot be determined, call DATCP’s Animal Toxic Response Team Coordinator at 608-224-4539 (during office hours) or WEM at 1-800-943-0003 (after hours and on weekends).

Wildlife poisoning or water contamination. Contact the WDNR district office. District offices are located in Eau Claire, Fitchburg, Green Bay, Milwaukee, Rhinelander, and Spooner.

Pesticides & endangered species

Endangered and threatened species are the most vulnerable plants and animals in our native natural communities. These species are either in danger of extinction or likely to become endangered in the foreseeable future. The EPA’s Endangered Species Protection Program (ESPP) will implement county-specific bulletins to provide applicators the information they need about pesticide use limitations in their county to better protect listed species and their habitat. The first product to carry a label statement directing users to view a bulletin is methoxyfenozide (Intrepid 2F), to protect the endangered Karner blue butterfly and Hine’s emerald dragonfly. As always, pesticide users are to follow the label on the product they are using.

When using pesticides whose label statements instruct you to follow the measures contained in the ESPP Bulletin, you must either access the EPA’s Bulletins Live! website or call their toll-free number (800-447-3813) within 6 months before using the product. The bulletin will show which counties or portions of counties are affected and the use limitations for that particular product. You must use the bulletin that is valid for the month and year in which you will apply the product.

Go to epa.gov/espp/ for general information on the ESPP and to access bulletins Live! The WDNR is responsible for implementing ESPP for our state. For more information about protected plants, animals, and natural communities in Wisconsin, see http://dnr.wi.gov/topic/endangeredresources/

Pesticide drift

It is impossible to totally eliminate pesticide drift. Drift occurs because of unforeseen wind variations and other factors, many of which are beyond the applicator’s control. People living in areas subject to pesticide drift worry about the acute and chronic effects of exposure to pesticides. State rules governing pesticide drift attempt to strike a balance between the intended benefits of pesticide use and the potential risks to those exposed to pesticide drift.

According to state law, people living adjacent to land that is aerially sprayed with pesticides can request to be notified at least 24 hours before application. Beekeepers also are entitled to notification of applications of products toxic to bees that occur within a 1.5-mile radius of their honeybee colonies. Both ground and aerial pesticide applications are subject to advance notification requirements to beekeepers who request such notification.

For ground applications, you can minimize drift by following these recommendations:

• Follow all label precautions for specific drift-reduction measures.
• Spray when wind speed is low.
• Use the maximum size nozzle orifice without sacrificing pest control activity.
• Keep pressure at the lowest setting possible without distorting spray pattern and distribution.
• Use drift-control agents when permitted by product label.
• Consider using nozzles specifically designed to reduce drift.
• Leave an untreated border strip next to adjacent property.

For more information about drift—what it is, how it occurs, and drift management principles—ask for Managing Pesticide Drift in Wisconsin: Field Sprayers from your county Extension office or download it by [access here](http://example.com).
Pesticides and groundwater

Trace amounts of pesticides are found in our nation’s groundwater. To minimize further contamination, many pesticide labels contain precautionary statements either advising against or prohibiting use in areas vulnerable to groundwater contamination.

To protect our state’s water resources, Wisconsin’s groundwater law (Act 310) created two guidelines to limit the presence of fertilizer and pesticides in groundwater: enforcement standards are maximum chemical levels allowed in groundwater and preventive action limits are set at a percentage of the enforcement standard. When contamination approaches preventive action limits, the responsible party must implement corrective measures to prevent further contamination.

Through groundwater monitoring studies, the most commonly found pesticide is atrazine. Atrazine rate limits and restrictions are explained more fully in the Corn Weed Management section of this publication.

Mixing and loading pesticides. Mixing and loading pesticides pose a high risk of point source contamination of ground and surface water because of the concentration, quantity, and type of pesticides that are usually handled at a mixing and loading site. To minimize this risk of environmental contamination, Wisconsin requires that certain mixing and loading sites have secondary containment.

Both private and commercial applicators are required to have a mixing and loading pad if more than 1,500 pounds of pesticide active ingredient are mixed or loaded at any one site in a calendar year or if mixing and loading occurs within 100 feet of a well or surface water. In-field mixing is exempt from the pad requirements provided mixing or loading at the site of application occurs 100 feet or more from a well or surface water. No mixing or loading of any kind can be done within 8 feet of surface water or wells.

Agricultural Chemical Cleanup Program. Cleanup of contaminated soil or of contaminated groundwater itself is costly. The Agricultural Chemical Cleanup Program (ACCP) helps ease the financial burden for facilities and farms by reimbursing them for eligible costs associated with the cleanup of sites contaminated with pesticides or fertilizers. For more information, visit https://datcp.wi.gov/Pages/Programs_Services/AgriculturalChemicalCleanupProgram.aspx

Calibrating pesticide equipment

Accurate and uniform pesticide application is fundamental to satisfactory pest control. Too frequently a grower does not know exactly how much pesticide has been used until the application is completed. This can lead to substantial monetary losses due to unnecessary pesticide and labor costs, unsatisfactory pest control resulting in reduced yields, and crop damage. Good pesticide application begins with accurate sprayer or granular applicator calibration. One method of calibration is contained in the Training Manual for the Private Pesticide Applicator. It also is found in the Training Manual for the Commercial Pesticide Applicator: Field and Vegetable Crops. Both of these are available at icpm.wisc.edu/pat

Cleaning pesticide sprayers

Thorough sprayer cleaning is necessary when switching from pesticide application on one crop to the application of a different pesticide on another crop. This is especially important when the second crop is quite sensitive to the first pesticide. For example, residue of dicamba left in a sprayer may damage soybeans and other dicamba-sensitive crops during subsequent pesticide applications. No cleaning method is 100% foolproof, however. If you apply significant quantities of different types of pesticides, reserve one sprayer for herbicides only and another for insecticides and fungicides.

Check the label for specific cleaning instructions. If none are listed, follow these guidelines:

1. Park the sprayer on a wash pad, flush the tank, lines, and booms thoroughly with clean water, and apply the pesticide-contaminated rinsate to sites listed on label. Simpler still, mount a clean water source on your sprayer, and flush the system while in the field.

2. Select the appropriate cleaning solution for the pesticide used:

 • Hormone-type herbicides (2,4-D, Banvel). Fill the sprayer with sufficient water to operate, adding 1 qt household ammonia for every 25 gal of water. Circulate the ammonia solution through the sprayer system for 15-20 minutes and then discharge a small amount through the boom and nozzles. Let the solution stand for several hours, preferably overnight. (Please note: household ammonia will corrode aluminum sprayer parts.)

 • Other herbicides, insecticides, and fungicides. Fill the sprayer with sufficient water to operate, adding 0.25-2 lb powder detergent (liquid detergent may be substituted for powder at a rate to make a sudsy solution) for every 25-40 gal of water. Circulate the solution through the sprayer system for 5-10 minutes and then discharge a small amount through the boom and...
Prepping pesticide sprayers for storage

Before storing the sprayer at the end of the season:

1. Clean the sprayer per label instructions or as specified above.
2. Fill the sprayer with sufficient water to operate, adding 1-5 gal of lightweight emulsifiable oil, depending upon the size of the tank. Circulate the oil-water solution through the sprayer system for 5-10 minutes.
3. Flush the solution out of the spray tank and through the boom; the oil will leave a protective coating on the inside of the tank, pump, and plumbing.
4. Remove the nozzles, screens, and strainers and place them in diesel fuel or kerosene to prevent corrosion. Cover the nozzle openings in the boom to prevent dirt from entering.
5. As an added precaution to protect pumps, pour 1 tablespoon of radiator rust-inhibitor antifreeze in each of the inlet and outlet ports. Rotate the pump several revolutions to completely coat the interior surfaces.

Pesticide disposal

It is the legal responsibility of all pesticide users to properly dispose of pesticide waste in an environmentally acceptable manner (it is illegal to bury or burn any pesticide containers in Wisconsin).

Some pesticides are considered “hazardous” by the EPA. Disposing waste or excess resulting from use of these pesticides comes under stringent regulations of the Resource Conservation Recovery Act (RCRA). This federal law and the accompanying state law (NR 600) regulate generators of hazardous waste—those who need to dispose of hazardous pesticides.

The simplest way to avoid becoming a hazardous-waste generator is to triple-rinse all pesticide containers and apply rinsates to labeled sites. If you must generate hazardous waste, disposal procedures may differ depending on the volume of waste generated and its characteristics.

You can reduce the amount of pesticide waste (hazardous or not) by following these guidelines:

- Determine whether the pesticide you intend to use is considered hazardous by the EPA. A list of these pesticides is available from your WDNR regional office. If listed, check for alternative pesticides that are not hazardous and will provide equivalent pest control.
- Mix only the amount of pesticide needed and calibrate equipment so all of the solution is applied.
- Attach a clean water supply to the sprayer unit so the tank can be rinsed and the rinsate applied to the labeled site while still in the field.
- Triple-rinse all pesticide containers. Even if the pesticides were hazardous, a triple-rinsed container is not hazardous waste; you can dispose of it in a sanitary landfill.
- Don’t mix hazardous waste with other pesticide waste, or the entire mixture will be considered hazardous.

Wisconsin Clean Sweep program.

Wisconsin's Clean Sweep program, sponsored by DATCP and individual counties, offers a way to dispose of most kinds of pesticide waste including liquids, dry formulations, and waste classified as hazardous. For details on when a site will be held in your area, check with your county Extension office or view the DATCP Clean Sweep interactive map at datcp.wi.gov/environment/clean_sweep/index.aspx

Wisconsin Clean Sweep offers grants for the collection and disposal of agricultural waste, household hazardous waste, and prescription drugs. However, not all municipalities collect all three types of waste at the same time, while some municipalities offer collection sites without use of Wisconsin Clean Sweep funds.

Plastic pesticide container recycling program.

The best way to dispose of plastic containers is to recycle them. The Wisconsin Agri-Business Association (WABA) sponsors a recycling program and sets up collection sites at member dealers throughout the state. This program accepts triple-rinsed (dirty containers will not be accepted) plastic pesticide containers of all sizes, including mini-bulk tanks. Farmers must work through their dealer to recycle jugs and mini-bulks. Visit www.wiagribusiness.org/recycling.html for instructions on the proper preparation of containers intended for recycling and for their summer and fall recycling schedules.

Please note that this recycling program is not a Wisconsin Clean Sweep program; waste pesticides will not be accepted at container collection or granulation sites.

Recycling mini-bulk tanks.

Although mini-bulk tanks are recycled at the same time as the smaller jugs, dealers must register with WABA at least 1 week in advance of a scheduled recycling date for all tanks 60 gallons and larger. Visit the Pesticide Containers Recycling Program at www.wiagribusiness.org/recycling.html for details.
Weed management principles for all crops

The proper combination of cultural, mechanical, and chemical practices can maintain weeds at levels that are not economically damaging. The goal of cultural weed management is to allow a crop to compete vigorously with weeds. Crop competition is one of the most useful and economical methods of weed control. This is achieved by planting adapted varieties at the ideal density into a favorable seedbed that has adequate nutrients. Seeding forage legumes with a small grain companion crop is an excellent example of using crop competition to control weeds. The small grain germinates and grows quickly, preventing most weeds from becoming established.

Rotation to another crop is another essential component of sound weed management programs because certain weeds are more common in some crops than in others. A well-planned cropping system prevents the buildup of weeds associated with monocultures. Mechanical control such as tilling to prepare a weed-free seedbed, rotary hoeing, and row cultivation are effective and important components in many weed management programs.

Herbicides are highly effective chemicals if carefully selected to match the weed spectrum and if application conditions are favorable. Still, the best herbicide and/or tillage program will not be effective without good crop competition.

Selecting a weed management program

Plan your weed management program well in advance of the planting season. Base it on thorough knowledge of the weed problem, soil characteristics, and future cropping plans. As crop production practices change, weed problems also change, so a good weed management program must be flexible.

Herbicides vary in the types of plants they control. Some treatments control most broadleaf and grassy weeds, others control primarily annual grasses, and still others control only broadleaf weeds. Soil characteristics may affect herbicide performance and crop safety. Most soil-applied herbicides are less effective on soils high in organic matter and may be ineffective on peat and muck soils. Others should not be used on light-textured sandy soils, since they leach too readily and may damage crop seedlings. Still others interact with organophosphate insecticides to cause serious corn injury. Some herbicides remain in the soil into the next cropping season and injure sensitive crops. Check the rotational crop restrictions for the herbicides that you are considering to prevent injury to next year’s crop.

When to apply herbicides

Some herbicides must be soil-incorporated before planting for effective control. Others can be surface-applied before or after planting. Many herbicide treatments are registered for application after crop emergence.

Soil-incorporating herbicides are positioned where weed seeds are germinating and beginning growth. Some herbicides require incorporation to prevent loss through volatilization or photo-decomposition. Proper herbicide incorporation is essential; check the herbicide label for recommended tillage/incorporation tools and how deep and fast they should be operated. Although rainfall after preplant-incorporated herbicide application will improve weed control, it isn’t essential.

Early preplant- and preemergence-applied herbicides depend on rainfall to move them into the soil. Under Wisconsin conditions, spring rainfall is usually adequate to accomplish this. When rainfall is limited, a shallow tillage tool such as a rotary hoe or spike-toothed harrow can provide sufficient soil incorporation to activate the herbicide treatment and destroy the first flush of weed seedlings.

Many postemergence-applied herbicide options are available and have increased in use. The effectiveness of these treatments is drastically influenced by weed size as well as temperature, moisture, and other environmental conditions. Proper timing is critical with postemergence applications to optimize weed control and minimize the risk of crop injury.

Can herbicide rates be reduced?

Producers are reevaluating their weed management practices and some are using lower herbicide rates than in the past. University of Wisconsin research has shown that application rates as much as 50% lower than the normal rates, combined with cultivation, can give excellent weed control. While the normal rate of a soil-applied herbicide often provides 60-90...
The objective of mixing herbicides is to capitalize on the advantages of all products while diminishing their disadvantages. Many such combinations have been registered for use. Herbicide combinations that are not recommended on the label may cause crop injury or provide ineffective weed control.

When tank mixing wettable powder, liquid flowable, or dry flowable herbicides with emulsifiable concentrates, mix the wettable powder with the water or liquid fertilizer first. Then add water or liquid fertilizer until you've reached approximately 75% of the total spray volume you'll use. Add the emulsifiable concentrate last; then bring the mixture to final spray volume.

Herbicide/fertilizer combinations

Herbicide application in liquid fertilizer solutions rather than water is popular. While such combination treatments save one trip over the field and enhance the burndown of existing weeds in conservation tillage, emerged corn is usually injured. Many individual herbicides and herbicide combinations are registered with the EPA for simultaneous application with liquid fertilizers. Herbicide labels and accompanying literature provide helpful mixing suggestions to minimize compatibility problems. If you have any doubt about the compatibility of a particular herbicide/fertilizer combination, run a compatibility test first. Adding compatibility agents such as Unite or Compex can reduce mixing problems. Wettable powder, liquid flowable, or dry flowable herbicides not properly mixed will sometimes float when mixed with liquid fertilizers. Emulsifiable concentrates occasionally cause mixing problems.

There also has been a trend toward impregnating herbicides on certain dry fertilizers. Some herbicides and herbicide combinations are registered with the EPA for this type of application. The herbicide manufacturer generally provides detailed directions and guidance for the impregnation process. Herbicide-impregnated fertilizer applications can provide weed control equal to comparable treatments applied as sprays. However, the herbicide/fertilizer blend and its application must be uniform, generally calling for a double spread or an airflow applicator.

Weather and herbicides

Herbicides applied to the soil are taken up by seeds, roots, and stems of seedling weeds and by established perennial plants. Adequate rainfall is necessary to move surface-applied herbicides into the soil for maximum uptake by developing weed seedlings. Preplant soil-incorporated treatments position herbicide in the soil and minimize the need for rainfall to make them effective. Only certain herbicides can be used in this way; others become too diluted or increase the risk of injuring crops when mixed into the soil.

Adequate soil moisture also helps weed seeds germinate quickly, which is desirable when using soil-applied herbicides. However, excessive rainfall after herbicide application may leach the more soluble herbicides into the vicinity of germinating crop seeds and cause crop damage, especially on light, sandy soils. Chemical and microbial decomposition break down herbicides more slowly in cool, dry soils, thereby increasing the danger that some herbicides may carry over and injure sensitive crops the following year.

Weather conditions also affect postemergence herbicides. Generally, both weed and crop plant sensitivity increase with temperature. Lower herbicide or adjuvant rates are sometimes suggested in hot, humid weather to minimize crop injury. Weeds are more difficult to kill in dry, cool, or cloudy weather. Mature weeds are always more difficult to control than weed seedlings. Rainfall after postemergence application may reduce an herbicide's effectiveness.

Mixing herbicides

Using mixtures of two or more herbicides for simultaneous application has become popular in recent years.
Check the product label or tables 2-6 (corn) and 3-4 (soybean) for the minimum required rain-free period.

Herbicide residues in soil
Most herbicides control weeds only as long as the herbicides remain in the soil. Full-season weed control is considered desirable for any herbicide treatment. But soil herbicide residue that persists after harvest or into the following growing season and damages the next crop is objectionable.

- Following a few simple rules will reduce the risk of herbicide residue damage.
- Follow crop rotation guidelines listed on the herbicide product label. See appendix table 8.4 for a listing of rotational crop intervals for many common crops. Herbicides that have no carryover risk do not list rotation restrictions.
- Use the minimum recommended rate necessary for adequate weed control and apply the herbicide uniformly.
- Till treated fields before planting a sensitive crop the next year.
- At equal rates of the same herbicide, preplant or preemergence applications generally present less risk of carryover than postemergence applications. The earlier treatment allows more time for breakdown.
- Crops vary in their tolerance to carryover of specific herbicides. Select a crop that has a high degree of tolerance to the previous year’s herbicide treatment or select an herbicide that will permit the planting of a rotation crop.

Several years of experience on a particular soil and an appreciation of environmental effects on herbicide carryover are the best guide to which crops you can safely plant the year after applying residual herbicide. Growers are encouraged to run a soil bioassay to determine whether harmful soil residues exist.

Herbicides and conservation tillage
In conservation tillage systems, crop residue protects the soil surface from excessive raindrop impact and soil erosion. This surface debris can also affect weed seed germination and herbicide distribution. Generally, surface residue of 3,000 pounds per acre or less (30% or less surface cover) does not interfere with herbicide performance. The key consideration of annual weed management in conservation tillage is that weed control may or may not be more difficult, but it probably will be different than in conventional systems.

Herbicide-resistant weeds
Herbicide resistant weeds have been present in Wisconsin for over 30 years, but with the heavy reliance of glyphosate a new “crop” of resistant weeds are now being seen in agronomic fields. Below is a summary of glyphosate resistance observed by weed species.

Giant ragweed: At least one population of glyphosate-resistant giant ragweed has been confirmed in a production field in Rock County, Wisconsin. Control failures following glyphosate have been anecdotally noted in additional fields in several other counties in the state. Moreover, at least one population of ALS-inhibitor resistant giant ragweed has been confirmed in Columbia County, with anecdotally noted control failures in other areas. If you have heavy infestations of giant ragweed in corn and soybean fields, it is advised to implement a sound herbicide resistance management plan with diverse weed management tactics.

Horseweed/marestail: Two populations have been confirmed resistant to glyphosate (Jefferson and Columbia County). While resistance is common in southern states, this has not been observed with great frequency in Wisconsin. Horseweed, mostly problematic in no-till situations, is easily controlled by tillage as well as growth regulator herbicides (2,4-D or dicamba) in early preplant and post applications in corn.

Waterhemp: As of September 2015, nine populations of waterhemp have been confirmed by either UW screening or submission of samples to the university of Illinois Plant Clinic. Counties that have at least one resistant population are widely dispersed throughout the state and include Eau Claire, Jefferson, Manitowoc, Lafayette, Outagamie, Pierce, Sheboygan, and Walworth.

Palmer amaranth: Glyphosate resistance has been confirmed in Dane and Sauk counties, whereas another population in Iowa county was found sensitive to glyphosate. However, preliminary results suggest that Iowa county population may be resistant to some ALS and HPPD inhibitors.

Resistance to other herbicides:
Additionally, biotypes of lambsquarters, smooth pigweed, velvetleaf, and kochia growing in Wisconsin are resistant to atrazine and other triazine herbicides. These problems developed after using triazine herbicides for six or more years without complementary control measures. This allowed the resistant biotype, initially a very small proportion of the total population, to produce seed and become the dominant biotype in many fields. Biotypes of weeds resistant to other herbicides have also been found in Wisconsin: giant foxtail and large crabgrass resistant to lipid synthesis inhibitors like Poast Plus, Select, and Assure; common ragweed, giant foxtail, eastern black nightshade, and kochia resistant to acetolactate synthase (ALS) inhibitors. Careful attention to sound weed management programs is critical if we hope to prevent the appearance of
more herbicide-resistant biotypes. Comprehensive lists of herbicide-resistant weeds and other information can be found at weedscience.org

The risk of developing more resistant weed problems is greater if we overuse herbicides that kill weeds by affecting only one physiological process in plants (that is, with a single mode of action). Table 1-3 lists the modes of action of most common herbicides and ranks them according to the risk of developing resistant weeds.

To minimize the risk of developing resistant weeds, a sound herbicide resistance management program uses a combination of these practices:

- Use herbicides only when necessary.
- Rotate herbicides with different effective modes of action from year to year.
- Use multiple effective modes of action each year.
- Use broad crop rotations; three or four crops in rotation provide more resistance protection than only two.
- Integrate mechanical control practices (rotary hoeing and cultivation) with herbicide use.
- Scout fields regularly and control escaping weeds as needed.
- Clean tillage and harvest equipment before moving from fields or farms with resistant weeds to other fields.

Table 1-3. Listing of herbicides by mode of action and risk of developing resistant biotypes

<table>
<thead>
<tr>
<th>Mode (site) of action</th>
<th>Group*</th>
<th>Herbicide</th>
<th>Active ingredient(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH RISK of developing resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accent Q</td>
<td></td>
<td>nicosulfuron</td>
<td></td>
</tr>
<tr>
<td>Affinity BroadSpec</td>
<td></td>
<td>thifensulfuron + tribenuron</td>
<td></td>
</tr>
<tr>
<td>Ally/Escort</td>
<td></td>
<td>metsulfuron</td>
<td></td>
</tr>
<tr>
<td>Arsenal</td>
<td></td>
<td>imazapyr</td>
<td></td>
</tr>
<tr>
<td>Autumn</td>
<td></td>
<td>iodosulfuron</td>
<td></td>
</tr>
<tr>
<td>Autumn Super</td>
<td></td>
<td>iodosulfuron + thiencarbazone</td>
<td></td>
</tr>
<tr>
<td>Basis Blend</td>
<td></td>
<td>rimsulfuron + thifensulfuron</td>
<td></td>
</tr>
<tr>
<td>Beacon</td>
<td></td>
<td>primisulfuron</td>
<td></td>
</tr>
<tr>
<td>Canopy EX</td>
<td></td>
<td>chlorimuron + tribenuron</td>
<td></td>
</tr>
<tr>
<td>Cimarron</td>
<td></td>
<td>metsulfuron</td>
<td></td>
</tr>
<tr>
<td>Classic</td>
<td></td>
<td>chlorimuron</td>
<td></td>
</tr>
<tr>
<td>Express</td>
<td></td>
<td>tribenuron</td>
<td></td>
</tr>
<tr>
<td>FirstRate</td>
<td></td>
<td>cloransulam</td>
<td></td>
</tr>
<tr>
<td>Harmony Extra SG</td>
<td></td>
<td>thifensulfuron + tribenuron</td>
<td></td>
</tr>
<tr>
<td>Harmony SG</td>
<td></td>
<td>thifensulfuron</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td></td>
<td>foramsulfuron</td>
<td></td>
</tr>
<tr>
<td>Oust</td>
<td></td>
<td>sulfometuron</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
<td>prosulfuron</td>
<td></td>
</tr>
<tr>
<td>Permit</td>
<td></td>
<td>halosulfuron</td>
<td></td>
</tr>
<tr>
<td>Plateau</td>
<td></td>
<td>imazapic</td>
<td></td>
</tr>
<tr>
<td>Pursuit</td>
<td></td>
<td>imazethapyr</td>
<td></td>
</tr>
<tr>
<td>Python</td>
<td></td>
<td>flumetsulam</td>
<td></td>
</tr>
<tr>
<td>Raptor</td>
<td></td>
<td>imazamox</td>
<td></td>
</tr>
<tr>
<td>Realm Q</td>
<td></td>
<td>rimsulfuron + mesotrione</td>
<td></td>
</tr>
<tr>
<td>Resolve Q</td>
<td></td>
<td>rimsulfuron + thifensulfuron</td>
<td></td>
</tr>
<tr>
<td>Steadfast Q</td>
<td></td>
<td>rimsulfuron + nicosulfuron</td>
<td></td>
</tr>
<tr>
<td>Synchrony XP</td>
<td></td>
<td>chlorimuron + thifensulfuron</td>
<td></td>
</tr>
<tr>
<td>Telar</td>
<td></td>
<td>chlorsulfuron</td>
<td></td>
</tr>
</tbody>
</table>

	2	Amino acid synthesis inhibitors (ALS)	
Assure II/Targa		quizalofop	
Fusilade DX		fluazifop	
Fusion		fluazifop + fenoxaprop	
Poast Plus		sethoxydim	
Select Max/Arrow		clethodim	

	1	Lipid synthesis inhibitors (ACCase)	
Assure II/Targa		quizalofop	
Fusilade DX		fluazifop	
Fusion		fluazifop + fenoxaprop	
Poast Plus		sethoxydim	
Select Max/Arrow		clethodim	

Continued on next page
Using new herbicides
The introduction of new herbicides invariably creates a good amount of grower interest. We encourage you to try new products that appear to fit your weed situation and soil condition but suggest you try them on a relatively small scale the first year.

Selecting herbicides
The herbicide treatments described in the following sections have provided effective weed control under Wisconsin conditions. For corn and soybeans, review tables 2-3a–f and 3-1a–b to determine that herbicides will control the weeds in your fields. Then review the remarks in the herbicide entry to select the herbicide that best fits your situation. Tables that summarize rain-free periods and adjuvant requirements for post-emergence herbicides, forage and grain harvest intervals, and rotational crop intervals are also included for easy reference.

All herbicide rates are expressed in weight or volume of commercial product as applied on a broadcast basis. See appendix table 8-1 for a list of herbicide products and related information.

Table 1-3. Listing of herbicides by mode of action and risk of developing resistant biotypes (continued)

<table>
<thead>
<tr>
<th>Mode (site) of action</th>
<th>Group</th>
<th>Herbicide</th>
<th>Active ingredient(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDIUM RISK of developing resistance</td>
</tr>
<tr>
<td>Amino acid inhibitors (EPSP synthase)</td>
<td>9</td>
<td>Roundup/Touchdown/etc.</td>
<td>glyphosate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadet</td>
<td>fluthiacet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobra/Phoenix</td>
<td>lactofen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flexstar/Reflex</td>
<td>fomesafen</td>
</tr>
<tr>
<td>Cell membrane disrupters (PPO)</td>
<td>14</td>
<td>Resource</td>
<td>flumiclorac</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sharp</td>
<td>saflufenacil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spartan</td>
<td>sulfentrazone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starane</td>
<td>fluoroxypryl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultra Blazer</td>
<td>acifluorfen</td>
</tr>
<tr>
<td>Cell membrane disrupters (photosystem I)</td>
<td>22</td>
<td>Gramoxone SL</td>
<td>paraquat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reglone</td>
<td>diquat</td>
</tr>
<tr>
<td>Photosynthesis inhibitors — contact (photosystem II)</td>
<td>6</td>
<td>Basagran</td>
<td>bentazon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buctril</td>
<td>bromoxynil</td>
</tr>
<tr>
<td>Photosynthesis inhibitors — systemic (photosystem II)</td>
<td>5</td>
<td>AAtrex, etc.</td>
<td>atrazine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metribuzin, etc.</td>
<td>metribuzin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Princep</td>
<td>simazine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simbar</td>
<td>terbacil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Velpar L</td>
<td>hexazinone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lorox DX</td>
<td>linuron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spike</td>
<td>tebuthiuron</td>
</tr>
<tr>
<td>Pigment inhibitors (isoprenoid pathway)</td>
<td>27</td>
<td>Callisto</td>
<td>mesotrione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact/Armezon</td>
<td>topiramazone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laudis</td>
<td>tembotrione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Command</td>
<td>clomazone</td>
</tr>
<tr>
<td>Seedling root growth inhibitors (multiple)</td>
<td>3</td>
<td>Balan</td>
<td>benefin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prowl H₂O, etc.</td>
<td>pendimethalin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treflan</td>
<td>trifluralin</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1-3. Listing of herbicides by mode of action and risk of developing resistant biotypes (continued)

<table>
<thead>
<tr>
<th>Mode (site) of action</th>
<th>Group*</th>
<th>Herbicide</th>
<th>Active ingredient(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW RISK of developing resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino acid inhibitors (Glutamine synthetase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Liberty 280 SL</td>
<td>glufosinate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Banvel/Clarity, etc.</td>
<td>dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crossbow</td>
<td>triclopyr + 2,4-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curtail</td>
<td>2,4-D + clopyralid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ForeFront</td>
<td>aminopyralid + 2,4-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCPA</td>
<td>MCPA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone</td>
<td>aminopyralid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starane</td>
<td>fluroxypyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>diflufenzopyr + dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stinger</td>
<td>clopyralid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thistrol</td>
<td>MCPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tordon</td>
<td>picloram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weedmaster</td>
<td>2,4-D + dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>Growth regulators (multiple)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Curvet/2,4-D + dicamba</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ForeFront</td>
<td>aminopyralid + 2,4-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ForeFront</td>
<td>MCPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milestone</td>
<td>aminopyralid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starane</td>
<td>fluroxypyr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td>diflufenzopyr + dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stinger</td>
<td>clopyralid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thistrol</td>
<td>MCPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tordon</td>
<td>picloram</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weedmaster</td>
<td>2,4-D + dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-D</td>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>Seedling shoot growth inhibitors (multiple)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dual II Magnum, etc.</td>
<td>metolachlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harness/Surpass, etc.</td>
<td>acetochlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRRO, etc.</td>
<td>alachlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outlook</td>
<td>dimethenamid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zidua</td>
<td>pyroxsulfone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eptam/Eradicane</td>
<td>EPTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ro-Neet</td>
<td>cyloate</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Dual II Magnum, etc.</td>
<td>metolachlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harness/Surpass, etc.</td>
<td>acetochlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRRO, etc.</td>
<td>alachlor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outlook</td>
<td>dimethenamid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zidua</td>
<td>pyroxsulfone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eptam/Eradicane</td>
<td>EPTC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ro-Neet</td>
<td>cyloate</td>
<td></td>
</tr>
</tbody>
</table>

*Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action
Fungicide resistance (insensitivity to the fungicide) results from a complex interaction between fungicide mode of action, fungus biology, frequency of fungicide use, fungicide application, and cropping system. Care must be used when applying fungicides to reduce the risk of resistance.

The Fungicide Resistance Action Committee (FRAC) developed a code, known as the FRAC Code and available at www.frac.info, that can be used to classify fungicides into groups based on their modes of action. Foliar fungicides currently registered in Wisconsin for use on corn, soybean, alfalfa, and wheat fall into seven FRAC Codes: 1, 3, 7, 11, 29, 33, and M.

FRAC Code 1
The methyl benzimidazole carbamate (MBC) fungicide group contains the benzimidazole and thiophanate fungicide families. These fungicides are effective against a broad range of fungi that cause leaf spots, root and crown rots, stem rots, and powdery mildews, but not rusts. MBC fungicides inhibit tubulin production, interfering with normal cell division in sensitive fungi. These fungicides have preventative and early-infection activity. While they have plant-penetrant properties, they cannot move down in the plant, making canopy penetration and complete plant coverage essential for control.

The modification of a single amino acid in a fungus can result in resistance. Resistance to these fungicides was first reported in 1970. Many important fungal plant pathogens have become resistant to these fungicides. The MBC fungicide risk of resistance is HIGH.

FRAC Code 3
The demethylation inhibitors (DMI) fungicide group contains the triazole fungicides. DMI fungicides are highly effective against powdery mildews, rusts, and many leaf spotting fungi. These fungicides work by inhibiting a specific enzyme that plays a role in sterol production in fungi. Sterols are necessary for the development of functional cell membranes in fungi. Application of DMIs results in abnormal fungal growth and death. However, triazoles have no effect on spore germination because spores contain enough sterol for the formation of germ tubes. Thus, DMI fungicide must be applied preventively or at early infection to be effective. DMI fungicides are acropetal penetrant fungicides, meaning that they are taken up into the plant and can move short distances in the water-conducting elements (xylem) of plants. Generally, these fungicides have approximately 14 days of residual activity.

DMI fungicides have a very specific site of action, so risk of resistance development is a concern. Resistance management practices include avoiding repeated applications of DMI fungicides in the same season against high-risk pathogens such as powdery mildew. The DMI fungicide risk of resistance is MEDIUM.

FRAC Code 7
Carboxamide fungicides include boscalid, carboxin, and flutolanil. Boscalid is primarily a foliar fungicide used against the Botrytis, Sclerotinia, and Alternaria pathogens. They work by inhibiting the respiration of target fungi, specifically complex II fungal respiration. Carboxamide fungicides are acropetal penetrant fungicides, meaning that they are taken up into the plant and can move short distances in the water-conducting elements (xylem) of plants. Resistance has been documented for these fungicides. The Carboxamide fungicide risk of resistance is MEDIUM.

FRAC Code 11
The Quinone outside inhibitors (QoI) fungicide group contains three fungicide families: strobilurins, imidazoles, and oxazoles. QoI fungicides are very effective against a broad spectrum of fungi. These fungicides work by inhibiting mitochondrial respiration, effectively stopping energy production of the fungus, and result in death. These fungicides are effective on spore germination and early growth. QoI fungicides vary on their mobility in plants. Some are local penetrants, while others are acropetal penetrants. Regardless of mobility in the plant, QoI fungicides are not effective against fungi that are growing inside the leaf tissue, so they must be applied preventively or at early infection to be effective. These fungicides have approximately 7-21 days of residual activity.

QoI fungicides have a very specific site of action, so the risk of...
resistance development is high. Currently there are more than 20 plant pathogens with some level of resistance to QoI fungicides. The QoI fungicide risk of resistance is HIGH.

FRAC Code 29
Oxidative Phosphorylation Uncoupler fungicides inhibit fungal respiration by disrupting the conversion of energy to a usable form. Fluazinam is an example of a common fungicide used to control white mold or Sclerotinia stem rot in crops, such as potato, that has been recently labeled in soybean. Fluazinam does inhibit the development of fungal infection structures and spore germination. Fluazinam is a contact fungicide and has little mobility within the plant. The Oxidative Phosphorylation Uncoupler risk of fungicide resistance is LOW.

FRAC Code 33
Fungicide active ingredients classified as salts of phosphorus acid in the group phosphonates have an unknown mode of action on fungi. Some studies suggest that the phosphite ion acts as an energy production inhibitor in fungi and oomycetes. The phosphite ion might also be responsible for triggering defense mechanisms in the plant. Recently fungicides containing potassium phosphite have been labeled for corn, soybeans, and small grains in Wisconsin. Potassium phosphite is considered a truly systemic fungicide, meaning it is translocated in the plant via the phloem and xylem (moving upward and downward in the plant. The phosphonates risk of fungicide resistance is LOW.

FRAC Code M
Multi-site activity fungicides include inorganic compounds (M1), dithiocarbamates (M3), and chloronitrides (M5). Multi-site activity fungicides have a broad spectrum of disease-control activity. They are contact fungicides and should be used preventatively since they are applied to the leaf and stem surfaces prior to pathogen appearance. They do not affect fungi once they have infected the plant. Multi-site activity fungicides affect multiple biochemical sites in fungi, killing fungi by overwhelming them with toxins. These fungicides are sensitive to rainfall and sunlight since they are not absorbed into the plant, generally remaining active for 7-14 days. Multi-site activity fungicides have a low risk of resistance development. Because of this, multi-site activity fungicides are an important part of fungicide resistance management. When multi-site fungicides are combined with either a code 3 or 11 fungicide (if allowed by the fungicide label), they may extend the number of years those higher risk fungicides can be used by reducing the number of applications of those high-risk fungicides. The multi-site activity fungicide risk of resistance is LOW.

Fungicide resistance management
To reduce the risk of resistance, use the following guidelines.

• Plant disease-resistant hybrids/varieties whenever possible.
• Maintain proper soil fertility.
• Scout fields regularly, noting incidence and severity of diseases. Use this information to develop a field history for future disease management decisions.
• Avoid sites with a history of high disease pressure.
• Utilize a crop rotation that fits your area and field history.
• Tank-mix high-risk fungicides with fungicides that have different modes of action, are active against the targeted disease(s), and have similar lengths of residual activity.
• Do not use reduced rates of fungicides.
• Alternate or tank-mix fungicides with different modes of action when multiple applications are required.
• Apply fungicides preventively or early in the disease cycle and when a disease threat is warranted.
• Avoid curative fungicide applications, especially with high-risk fungicides.

Always read and follow the pesticide label:
• For maximum number of sprays per season.
• For recommended application rates.
• For application timing for both target disease and plant growth stage.
CORN PEST MANAGEMENT
Corn weed management

Herbicide treatments are specific as to time and method of application, soil type, rate applied, and are weed species specific. Crops that follow in rotation are also important considerations. Failure to apply herbicides according to label directions can result in incomplete weed control, excessive crop injury, or damage to subsequent crops. If you don’t get significant rainfall within 5-7 days after preemergence herbicide application, use a rotary hoe or spike-toothed harrow to incorporate the herbicide into the soil as well as to destroy many weed seedlings. Whenever possible, use row cultivation to control those weeds that might have escaped earlier weed control treatments.

Many herbicide combinations are registered for use on corn. The use of herbicide combinations that are not registered is discouraged since liability for performance and crop injury lie solely with the user. Similarly, the combination of herbicides with fertilizers or insecticides for simultaneous application is discouraged unless the herbicide label outlines directions for such combination use. Be sure to check the herbicide label or accompanying literature carefully before using herbicides in combination with fertilizers, insecticides, or other herbicides.

Atrazine rate limits and restrictions

Because of concern about groundwater contamination, Wisconsin has enacted atrazine rate restrictions based on surface soil texture, prior atrazine use, and geographic location relative to atrazine detection in groundwater. Wisconsin’s Atrazine Rule (ATCP 30) imposes a 0.75-1.5 lb/a rate limit on atrazine use statewide. An exception is allowed for growers who find it necessary to use atrazine postemergence to “rescue” seed or sweet corn from weed competition. This exception applies only to seed corn and sweet corn, and the total amount of atrazine used at planting and postemergence may not exceed 1.5 lb/a on coarse soil and 2 lb/a on medium/fine soil. In addition, atrazine use is prohibited in extensive areas of Dane county and the entire Lower Wisconsin River valley extending downstream from the Highway 60 bridge at Prairie du Sac to the confluence of the Wisconsin and Mississippi Rivers. Localized areas of Adams, Brown, Calumet, Chippewa, Columbia, Dodge, Eau Claire, Grant, Green, Green Lake, Iowa, Jackson, Juneau, Lafayette, Marinette, Marinette, Monroe, Outagamie, Pierce, Portage, Richland, Rock, St. Croix, Sauk, Trempealeau, Vernon, Walworth, Waupaca, Waushara, Winnebago, and Wood counties have a total prohibition on atrazine use. Contact your county Extension office for detailed maps of atrazine prohibition areas or visit the DATCP website: datcp.wi.gov/Environment/Water_Quality/Atrazine/Atrazine_Prohibition_Areas

Table 2-1 lists atrazine active ingredient rate limits for various management situations in Wisconsin, and table 2-2 lists the maximum rates of atrazine-containing products according to these rate limits. Be certain to reduce the use rates of atrazine and atrazine-containing products according to the Wisconsin Atrazine Rule.

State and federal rules have also established setbacks for mixing, loading, and applying atrazine and atrazine-containing herbicides. Heed the following guidelines to minimize ground- and surface water contamination by atrazine.

- No mixing or loading within 100 feet of wells, sinkholes, streams, lakes, or reservoirs unless mixing or loading over a spill containment pad constructed in compliance with Wisconsin ATCP 29. (Note: In Wisconsin, this rule applies for all pesticides. Federal rules require a 50-foot setback for atrazine only.)

- No application within 50 feet of a well or sinkhole or within 200 feet of the shoreline of natural or impounded lakes or reservoirs.

- No application within 66 feet of where field runoff enters streams (perennial or intermittent) and rivers.

- No application before April 1 or after July 31.

- Atrazine application records must be kept for 3 years.

<table>
<thead>
<tr>
<th>Surface soil texture</th>
<th>Atrazine used last year</th>
<th>No atrazine used last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.75 lb/a</td>
<td>0.75 lb/a</td>
</tr>
<tr>
<td>Medium/Fine</td>
<td>1.0 lb/a</td>
<td>1.5 lb/a</td>
</tr>
</tbody>
</table>
Burndown herbicides for no-till corn

No-till cropping systems are increasingly being used due to the economic and environmental benefits they offer. Weed management is particularly important in these systems because no tillage is done before planting and few producers cultivate no-till fields after planting. The purpose of a burndown herbicide application is to ensure that the crop is planted into a weed-free setting. Check fields carefully to determine if such a treatment is needed. Give particular attention to perennial weeds like dandelion, white cockle, and quackgrass plus winter annuals like shepherd's purse, chickweeds, buttercups, and pennycress.

Terminating corn stands for replant

Occasionally corn stands are deemed undesirable due to low establishment rates and there is a need to terminate emerged corn seedlings with a herbicide in no-till situations. If the corn hybrid is not glyphosate-resistant (Roundup Ready), then glyphosate can be effectively used by following the burndown recommendations presented in the corn and soybean sections of this book. If the hybrid is glyphosate-resistant (Roundup Ready), then a supplemental label exists for Select Max herbicide to be applied at 6 fl oz/a for corn up to 12 inches and the interval for replanting corn is reduced to 6 days. The replant interval is 30 days for higher rates. Follow adjuvant recommendations noted for Select Max in the Postemergence herbicides section of the soybean chapter of this book.

Table 2-2. Wisconsin rate limits for products containing atrazine

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Coarse 0.75 lb limit</th>
<th>Medium/Fine 1.0 lb limit</th>
<th>Medium/Fine 1.5 lb limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuron</td>
<td>6 pt</td>
<td>8 pt</td>
<td>12 pt</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>1.5 pt</td>
<td>2 pt</td>
<td>3 pt</td>
</tr>
<tr>
<td>Atrazine 4L</td>
<td>1.5 pt</td>
<td>2.0 pt</td>
<td>3.0 pt</td>
</tr>
<tr>
<td>Atrazine 90DF</td>
<td>0.83 lb</td>
<td>1.11 lb</td>
<td>1.67 lb</td>
</tr>
<tr>
<td>Bicep II Magnum</td>
<td>0.9 qt</td>
<td>1.3 qt</td>
<td>1.9 qt</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>1.1 qt</td>
<td>1.5 qt</td>
<td>2.2 qt</td>
</tr>
<tr>
<td>Breakfree ATZ</td>
<td>2.6 pt</td>
<td>3.5 pt</td>
<td>5.3 pt</td>
</tr>
<tr>
<td>Breakfree ATZ Lite</td>
<td>4.0 pt</td>
<td>5.3 pt</td>
<td>8.0 pt</td>
</tr>
<tr>
<td>Bullet/Lariat</td>
<td>4.0 pt</td>
<td>5.3 pt</td>
<td>8.0 pt</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>2.0 pt</td>
<td>2.5 pt</td>
<td>3.5 pt</td>
</tr>
<tr>
<td>Cinch ATZ</td>
<td>1.9 pt</td>
<td>2.5 pt</td>
<td>3.8 pt</td>
</tr>
<tr>
<td>Cinch ATZ Lite</td>
<td>2.2 pt</td>
<td>3.0 pt</td>
<td>4.5 pt</td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>2.2 qt</td>
<td>2.98 qt</td>
<td>3.7 qt</td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>2.2 pt</td>
<td>2.9 pt</td>
<td>3.5 pt</td>
</tr>
<tr>
<td>Guardsman Max</td>
<td>1.8 pt</td>
<td>2.4 pt</td>
<td>3.6 pt</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>3.5 pt</td>
<td>4.7 pt</td>
<td>5.4 pt</td>
</tr>
<tr>
<td>Harness Xtra 5.6L</td>
<td>2.4 pt</td>
<td>3.2 pt</td>
<td>4.8 pt</td>
</tr>
<tr>
<td>Keystone NXT</td>
<td>1.3 qt</td>
<td>1.8 qt</td>
<td>2.7 qt</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>2.0 qt</td>
<td>2.67 qt</td>
<td>3.0 qt</td>
</tr>
<tr>
<td>Lexar</td>
<td>1.7 qt</td>
<td>2.3 qt</td>
<td>3.4 qt</td>
</tr>
</tbody>
</table>

* Labeled rate of Lumax EZ does not exceed the atrazine rate limits.
Table 2-3a. Weed control ratings of preplant-incorporated corn herbicides

<table>
<thead>
<tr>
<th>Preplant-incorporated (PPI) herbicides</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk of corn injury</td>
<td>Risk of corn injury</td>
<td>Risk of corn injury</td>
</tr>
<tr>
<td></td>
<td>Barnyardgrass</td>
<td>Crabgrass</td>
<td>Fall panicum</td>
</tr>
<tr>
<td>AAtrax 4L</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>AAtrax 90DF</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>27</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Bullet</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Corvis</td>
<td>27,2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Degree XTRA</td>
<td>5,15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Fulltime NXT</td>
<td>5,15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>15,5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Harness</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>2,4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Instigate</td>
<td>2,27</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Lariat</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Outlook</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Princep 4L</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Python</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Resicore</td>
<td>15,27,4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Sharpen</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>SureStart II</td>
<td>15,4,2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Surpass NXT</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>15,4,2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Zidua</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

a These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

b Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

c If column is marked with an x, see table 2-3b for caution statement.
Table 2-3b. Cautionary statements for preplant-incorporated corn herbicides

<table>
<thead>
<tr>
<th>Preplant-incorporated (PPI) herbicides</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAtrex 4L</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>AAtrex 90DF</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>Labeled for use in Columbia, Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties only. Cannot be used on soils classified as course-textured if depth to groundwater is less than 25 ft. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.</td>
</tr>
<tr>
<td>Corvis</td>
<td>Labeled for use in Columbia, Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties only. Cannot be used on soils classified as course-textured if depth to groundwater is less than 25 ft. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>Not labeled for use on peat or muck soils.</td>
</tr>
<tr>
<td>Harness</td>
<td>Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31. Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Outlook</td>
<td>Do not use on sands with less than 3% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Resicore</td>
<td>Not recommended on soils with more than 10% organic matter.</td>
</tr>
<tr>
<td>Sharpen</td>
<td>Do not use on sands with less than 3% organic matter and where depth to groundwater is 30 feet or less.</td>
</tr>
<tr>
<td>SureStart II</td>
<td>Only labeled for use on Roundup Ready and Liberty Link field and silage corn. When depth to groundwater is less than 30 feet, do not use on sands with less than 3% organic matter, on loamy sands with less than 2% organic matter, or on sandy loams with less than 1% organic matter.</td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>Only labeled for use on Roundup Ready and Liberty Link field and silage corn. When depth to groundwater is less than 30 feet, do not use on sands with less than 3% organic matter, on loamy sands with less than 2% organic matter, or on sandy loams with less than 1% organic matter.</td>
</tr>
</tbody>
</table>

* These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.
<table>
<thead>
<tr>
<th>Preemergence (PRE) herbicides</th>
<th>Mode of action group<sup>b</sup></th>
<th>Risk of corn injury</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAtrex 4L</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>AAtrex 90DF</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Acuron</td>
<td>5, 15, 27</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Anthem</td>
<td>14, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>14, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>5, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Bullet</td>
<td>15, 5</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Callisto</td>
<td>27</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Capreno</td>
<td>2, 27</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Degree XTRA</td>
<td>5, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Fierce</td>
<td>14, 15</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Fultime NXT</td>
<td>5, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>G-MaxLite</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Harness</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Harness XTRA 5.6L</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>2, 4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Instigate</td>
<td>2, 27</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Lariat</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>15, 5, 27</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Outlook</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Princep 4L</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>3, 2</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Python</td>
<td>2, 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

^a These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

^b Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

^c If column is marked with an x, see table 2-3d for caution statement.
Table 2-3c. Weed control ratings of preemergence corn herbicides\(^a\) (continued)

<table>
<thead>
<tr>
<th>Preemergence (PRE) herbicides</th>
<th>Mode of action group(^b)</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundup PowerMAX</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Sharpen</td>
<td>14,4,2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SureStart II</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Surpass NXT</td>
<td>15</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Valor SX</td>
<td>14</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Verdict</td>
<td>14,15</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Vida</td>
<td>15</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Zemax</td>
<td>15,27</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Zidua</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

\(^a\)These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

\(^b\) Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

\(^\text{c}\) If column is marked with an x, see table 2-3d for caution statement.

Table 2-3d. Cautionary statements for preemergence corn herbicides\(^a\)

<table>
<thead>
<tr>
<th>Preemergence (PRE) herbicides</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAtrex 4L</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>AAtrex 90DF</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Acuron</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Capreno</td>
<td>Do not use preemergence in coarsely textured soils with less than 2% organic matter.</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>Not labeled for use on peat or muck soils.</td>
</tr>
<tr>
<td>Harness</td>
<td>Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31. Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Outlook</td>
<td>Do not use on sands with less than 3% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>Do not apply Resolve preemergence to coarse-textured soils with less than 1% organic matter.</td>
</tr>
<tr>
<td>Sharpen</td>
<td>Do not use on sands with less than 3% organic matter and where depth to groundwater is 30 feet or less.</td>
</tr>
<tr>
<td>SureStart II</td>
<td>Only labeled for use on Roundup Ready and Liberty Link field and silage corn. When depth to groundwater is less than 30 feet, do not use on sands with less than 3% organic matter, on loamy sands with less than 2% organic matter, or on sandy loams with less than 1% organic matter.</td>
</tr>
</tbody>
</table>

\(^a\) These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.
Table 2-3e. Weed control ratings of postemergence corn herbicides

<table>
<thead>
<tr>
<th>Postemergence (POST) herbicides</th>
<th>Mode of action group(^b)</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D Amine 4, Shredder</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2,4-D LV4, Shredder</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>AAtrex 4L</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>AAtrex 90DF</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Accent Q</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Acuron</td>
<td>15, 27</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Acuron Flexi</td>
<td>15, 27</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Anthem</td>
<td>14, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>14, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>5, 14, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>27</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Basagran</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Buctril 2EC</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buctril 4EC</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bullet</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Cadet</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calisto Xtra</td>
<td>27, 5</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Calisto GT</td>
<td>9, 27</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Capreno</td>
<td>27</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Clarity</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corvis</td>
<td>27, 2</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Degree XTRA</td>
<td>5, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Diflaxx</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>4, 27</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Fultime NXT</td>
<td>5, 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>15, 5</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

\(^a\) These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

\(^b\) Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

\(^c\) If column is marked with an x, see table 2-3f for caution statement.
Table 2-3e. Weed control ratings of postemergence corn herbicides* (continued)

<table>
<thead>
<tr>
<th>Postemergence (POST) herbicides</th>
<th>Mode of action group</th>
<th>Risk of corn injury</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halex GT</td>
<td>15,9,27</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harness</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Harness XTRA 5.6L</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>2,4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Impact</td>
<td>27</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Instigate</td>
<td>2,2,7</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Lariat</td>
<td>15,5</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Laudis</td>
<td>27</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>15,5,27</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>NorthStar</td>
<td>2,4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Option</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Outlook</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Permit</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Python</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Realm Q</td>
<td>2,2,7</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Resicore</td>
<td>15,27,4</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Resource</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Revulin Q</td>
<td>2,27</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>9</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Solstice</td>
<td>14,27</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Status</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Stinger</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SureStart II</td>
<td>15,4,2</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

*These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

**These herbicides have Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

† If column is marked with an x, see table 2-3f for caution statement.

Continued on next page
Table 2-3e. Weed control ratings of postemergence corn herbicides* (continued)

<table>
<thead>
<tr>
<th>Postemergence (POST) herbicides</th>
<th>Mode of action group</th>
<th>Risk of corn injury</th>
<th>Barley</th>
<th>Crabgrass</th>
<th>Fall panicum</th>
<th>Field sandbur</th>
<th>Foxtails</th>
<th>Wild proso millet</th>
<th>Wooly cupgrass</th>
<th>Cocklebur</th>
<th>Common ragweed</th>
<th>Eastern black nightshade</th>
<th>Giant ragweed</th>
<th>Lamb'squarters</th>
<th>Pigweeds</th>
<th>Smartweeds</th>
<th>Velvetleaf</th>
<th>Canada thistle</th>
<th>Dandelion</th>
<th>Hemp dogbane</th>
<th>Nutsedge</th>
<th>Quackgrass</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surpass NXT</td>
<td>15,4,2</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>15,4,2</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Yukon</td>
<td>2,4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zemax</td>
<td>15,27</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

*These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

| Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

| If column is marked with an x, see table 2-3f for caution statement.
Table 2-3f. Cautionary statements for postemergence corn herbicides

<table>
<thead>
<tr>
<th>Postemergence (POST) herbicides</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAtrex 4L</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>AAtrex 90DF</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Acuron</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Acuron Flexi</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>Labeled for use in Columbia, Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties only. Cannot be used on soils classified as course-textured if depth to groundwater is less than 25 ft. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>Use only on Roundup Ready hybrids.</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31.</td>
</tr>
<tr>
<td>Corvis</td>
<td>Labeled for use in Columbia, Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties only. Cannot be used on soils classified as course-textured if depth to groundwater is less than 25 ft. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>Not labeled for use on peat or muck soils.</td>
</tr>
<tr>
<td>Halex GT</td>
<td>Use only on Roundup Ready hybrids.</td>
</tr>
<tr>
<td>Harness</td>
<td>Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>Contains atrazine; please follow the restrictions in ATCP 30. Do not apply before April 1 or after July 31. Do not use on sands with less than 3% organic matter, loamy sands with less than 2% organic matter, or sandy loams with less than 1% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>Only use on Liberty Link corn hybrids.</td>
</tr>
<tr>
<td>NorthStar</td>
<td>Do not use on sweet corn.</td>
</tr>
<tr>
<td>Outlook</td>
<td>Do not use on sand with less than 3% organic matter when depth to groundwater is less than 30 feet.</td>
</tr>
<tr>
<td>Realm Q</td>
<td>Do not apply to field corn grown for seed, popcorn, or sweet corn.</td>
</tr>
<tr>
<td>Resicore</td>
<td>Do not apply POST to popcorn. Not recommended on soils with more than 10% organic matter.</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>Only use on Roundup Ready corn hybrids.</td>
</tr>
<tr>
<td>Status</td>
<td>Do not use on soils classified as sand with less than 3% organic matter and where groundwater depth is shallow.</td>
</tr>
<tr>
<td>SureStart II</td>
<td>Only labeled for use on Roundup Ready and Liberty Link field and silage corn. When depth to groundwater is less than 30 feet, do not use on sands with less than 3% organic matter, on loamy sands with less than 2% organic matter, or on sandy loams with less than 1% organic matter.</td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>Only labeled for use on Roundup Ready and Liberty Link field and silage corn. When depth to groundwater is less than 30 feet, do not use on sands with less than 3% organic matter, on loamy sands with less than 2% organic matter, or on sandy loams with less than 1% organic matter.</td>
</tr>
</tbody>
</table>

These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.
Corn herbicides

2,4-D Amine 4, Shredder 2,4-D

POST: 0.5 to 1.0 pt/a; This is an amine formulation. It can be applied at 1 pt/a late postemergence.
Adjuvants: Do not add crop oil or serious corn injury may occur. Add surfactant if directed by tank-mix partner.
Crop stage: Apply early postemergence to 4-8 inch tall corn. Make late postemergence drop-nozzle applications to corn between 8 inches tall until 1 week before tassel emergence. Preharvest applications can be made after silks brown.
Weed Timing: Annual broadleaf weeds are controlled best when less than 3 inches tall. Perennial broadleaves should be 10 inches or more in height when treated.
Remarks: Corn injury is most likely when corn is growing rapidly under high temperature and high soil moisture conditions. Under such circumstances, delay cultivation for 8-10 days to allow corn to overcome any temporary stalk brittleness. Corn hybrids vary in their tolerance to 2,4-D. For early postemergence applications, use the lower rate for treatment in hot, humid weather. For late drop-nozzle applications, adjust the application rate in direct proportion to the amount of the field area actually being treated. If the entire row and inter-row area is being treated, no rate reduction is necessary. Direct the spray toward the base of the corn row to obtain maximum weed coverage with minimum corn injury. Smartweeds and wild buckwheat are somewhat tolerant of 2,4-D, especially the amine form. Only certain brands of 2,4-D are registered for preharvest use. The purpose of preharvest treatment is to limit weed seed production and suppress tall growing weeds that might interfere with corn harvest.
Apply 1 qt/a by ground or air after corn silks turn brown. Some studies have shown substantial reduction in the viability of certain weed seeds, but velvelleaf seed viability was reduced only slightly. Postemergence application of 2,4-D may be used on field corn, silage corn, and sweet corn. Because sweet corn is more susceptible to damage than field corn, 2,4-D is seldom used on sweet corn.

AAtrex 4L atrazine
PPI: 1.5 to 3.0 pt/a; Shallowly incorporate atrazine within 2 weeks of planting.
Weed timing: Will not control perennial weeds.
Remarks: These atrazine rates alone are inadequate to control annual grass weeds except on very coarse-textured, low organic matter soils, and when combined with rotary hoeing and/or row cultivation. Otherwise, atrazine controls most annual broadleaf weeds. These atrazine treatments are ineffective on peat or muck soils. Many cases of atrazine- (triazine-) resistant common lambsquarters, smooth pigweed, velvetleaf, and kochia have been documented in Wisconsin. Increasing the atrazine rate or altering application timing will not control triazine-resistant weeds. Atrazine can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications.
PRE: 1.5 to 3.0 pt/a; Because of the 1.5-3.0 pt/a rate limit, soil-applied atrazine treatments are generally inadequate for complete weed control in no-till corn production.
Crop stage: Apply after planting but before emergence.
Weed timing: Will not control perennial weeds.
Remarks: See PPI remarks above.
POST: 1.5 to 3.0 pt/a
Adjuvants: COC. Add 1 qt/a of COC; Oil-based adjuvants speed weed burndown but can also burn leaf margins and occasionally stunt corn. Injury is increased by cold, wet weather or any other conditions that put corn under stress. Risk of corn injury is greatest with inbred corn lines or breeding stock.
Crop stage: Apply before corn exceeds 12 inches in height.
Weed timing: Apply before annual broadleaf weeds exceed 4 inches tall. This treatment controls most annual broadleaf weeds but fails to control annual grasses and triazine-resistant weeds.
Remarks: Postemergence applied atrazine can provide annual broadleaf weed control. Many cases of atrazine- (triazine-) resistant common lambsquarters, smooth pigweed, velvetleaf, and kochia have been documented in Wisconsin. Increasing the atrazine rate or altering application timing will not control triazine-resistant weeds. Atrazine can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications. Wisconsin ATCP 30 allows postemergence rescue treatments to seed and sweet corn only of up to 3 pt/a (coarse soils) or 4 pt/a (medium/fine soils). This rescue treatment cannot be used in atrazine prohibition areas.

AAtrex 90DF atrazine
PPI: 0.83-1.67 lb/a; Shallowly incorporate atrazine within 2 weeks of planting.
Weed timing: Will not control perennial weeds.
Remarks: These atrazine rates alone are inadequate to control annual grass weeds except on very coarse-textured, low organic matter soils and when combined with rotary hoeing and/or row cultivation. Otherwise, atrazine controls most annual broadleaf weeds. These atrazine treatments are ineffective on peat or muck soils. Many cases of atrazine- (triazine-) resistant common lambsquarters, smooth pigweed, velvetleaf, and kochia have been documented in Wisconsin. Increasing the atrazine rate or altering application timing will not control triazine-resistant weeds. Atrazine can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications. PRE: 1.5 to 3.0 pt/a; Because of the 1.5-3.0 pt/a rate limit, soil-applied atrazine treatments are generally inadequate for complete weed control in no-till corn production.
simultaneous preplant-incorporated or preemergence applications.

PRE: 0.83–1.67 lb/a; Because of the 0.83–1.67 pt/a rate limit, soil-applied atrazine treatments are generally inadequate for complete weed control in no-till corn production.

Crop stage: Apply after planting but before emergence.

Weed timing: Will not control perennial weeds.

Remarks: See PPI remarks above.

POST: 0.83–1.67 lb/a

Adjuvants: COC, NIS, N, AMS; Add either 0.25% NIS or 1% COC if weeds are present. Nitrogen or MSO can be added, but only if corn has not emerged.

Crop stage: Apply before drill or before 12 inches in height.

Weed timing: Apply before annual broadleaf weeds exceed 4 inches tall. This treatment controls most annual broadleaf weeds but fails to control annual grasses and triazine-resistant weeds.

Remarks: Postemergence applied atrazine can provide annual broadleaf weed control. Many cases of atrazine- (triazine-) resistant common lambsquarters, smooth pigweed, velvetleaf, and kochia have been documented in Wisconsin. Increasing the atrazine rate or altering application timing will not control triazine-resistant weeds. Atrazine can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications. Wisconsin ATCP 30 allows postemergence rescue treatments to seed and sweet corn only of up to 1.67 lb/a (coarse soils) or 2.23 lb/a (medium or fine soils). This rescue treatment cannot be used in atrazine prohibition areas.

Accent Q

nicosulfuron + safener

POST: 0.45–1.8 oz/a

Adjuvants: COC, NIS, N, AMS; Add crop oil concentrate at 1% or nonionic surfactant at 0.25% to the spray solution. Also add 2 qt/a of 28% nitrogen solution or 2 lb/a of spray-grade ammonium sulfate. Crop oil concentrate is the preferred adjuvant for all these tank mixtures except products containing dicamba, where a nonionic surfactant is preferred.

Crop stage: Apply from emergence through the 6-collar (V6) stage but before corn is 20 inches tall. Use drop nozzles for 20- to 36-inch-tall corn. Do not apply to corn taller than 36 inches or exhibiting 10 or more collars (V10), whichever comes first. Do not apply Accent Q to seed corn or popcorn that is more than 20 inches tall or exhibits 6 or more collars.

Weed timing: Weeds that exceed listed weed sizes may be partially controlled with Accent Q.

Remarks: Lacks residual control, but if a second flush of weeds develops, a second application may be made. Can be tank mixed with atrazine, Buctril, Callisto, dicamba, Impact plus atrazine, NorthStar, or Status to provide broadleaf control. Do not tank mix with postemergence herbicides like Basagran or 2,4-D because crop injury or antagonism may occur. Tank mixing with dicamba may increase the risk of rat-tailing if applied to small corn. Do not use on fields treated with Counter 20G applied in furrow at planting or over the row at cultivation. May injure corn treated with Counter 20G, Lorsban, or Thimet if soil has less than 4% organic matter. May be used on field corn, silage corn, seed corn, popcorn, and on sweet corn hybrids except for Merit, Carnival, and Sweet Success.

Acuron

s-metolachlor + atrazine + mesotrione + bicyclopynone

PRE: 2.5–3.0 qt/a; 2.5 qt/a is recommended for soils with less than 3% organic matter, otherwise use 3.0 qt/a. Not recommended for soils with 10% or more organic matter.

Adjuvants: NIS, COC; Add either 0.25% NIS or 1% COC if weeds are present. Nitrogen or MSO can be added, but only if corn has not emerged.

Crop stage: Can be applied up to 28 days prior to planting as a surface or banded application.

Remarks: This product will not provide consistent control of emerged grass weeds, therefore tank mix partners need to be added to address these pests. See label for the range of tank mix partners. S-metolachlor can be tank mixed when applied preemergence to improve grass control if needed. If Bicep II Magnum, Bicep Lite II Magnum, Dual Magnum, or Dual II Magnum have been applied prior to Acuron Flexi, limit applications to conform with label restrictions. Applying an OP insecticide or Counter within 7 days before or after may result in severe corn injury.

POST: 2.25–2.75 qt/a; 2 qt/a is recommended for soils with less than 3% organic matter, otherwise use 2.25 qt/a. Not recommended for soils with 10% or more organic matter.

Adjuvants: NIS, COC; Add either 0.25% NIS or 1% COC if weeds are present. Addition of nitrogen or MSO will injure any emerged corn and is not recommended.

Crop stage: Apply before corn reaches 30 inches in height or V8. Do not apply POST to sweet corn or yellow popcorn.

Weed timing: Apply when broadleaf weed are less than 3 inches tall.

Remarks: This product will not provide consistent control of emerged grass weeds, therefore tank mix partners need to be added to address these pests. See label for the range of tank mix partners. Bicop II Magnum, Bicop Lite II Magnum, atrazine, Dual Magnum, or Dual II Magnum have been applied prior to Acuron Flexi, limit applications to conform with label restrictions. Do not apply with liquid fertilizer. Can tank mix with glyphosate; If formulation is fully loaded, AMS may be added at **Acuron Flexi**

s-metolachlor + atrazine + mesotrione + bicyclopynone

PRE: 2–2.25 qt/a; 2 qt/a is recommended for soils with less than 3% organic matter, otherwise use 2.25 qt/a. Not recommended for soils with 10% or more organic matter.

Adjuvants: NIS, COC; Add either 0.25% NIS or 1% COC if weeds are present. Nitrogen or MSO can be added, but only if corn has not emerged.

Crop stage: Can be applied up to 28 days prior to planting as a surface or banded application.

Remarks: This product was developed for atrazine prohibition areas. It will not provide consistent control of emerged grass weeds, therefore tank mix partners need to be added to address these pests. See label for the range of tank mix partners. Simazine can be tank mixed when applied preemergence to improve grass control if needed. If Bicep II Magnum, Bicep Lite II Magnum, Dual Magnum, or Dual II Magnum have been applied prior to Acuron Flexi, limit applications to conform with label restrictions. Applying an OP insecticide or Counter within 7 days before or after may result in severe corn injury.

POST: 2–2.25 qt/a; 2 qt/a is recommended for soils with less than 3% organic matter, otherwise use 2.25 qt/a. Not recommended for soils with 10% or more organic matter.

Adjuvants: NIS, COC; Add either 0.25% NIS or 1% COC if weeds are present. Addition of nitrogen or MSO will injure any emerged corn and is not recommended.

Crop stage: Apply before corn reaches 30 inches in height or V8. Do not apply POST to sweet corn or yellow popcorn.

Weed timing: Apply when broadleaf weed are less than 3 inches tall.

Remarks: This product will not provide consistent control of emerged grass weeds, therefore tank mix partners need to be added to address these pests. See label for the range of tank mix partners. May be applied as a split application. Apply 1/2 to 1/3 of the labeled rate prior to crop emergence, then apply 1/2 to 1/3 of the labeled rate after corn emergence. If Bicep II Magnum, Bicep Lite II Magnum, atrazine, Dual Magnum, or Dual II Magnum have been applied prior to Acuron, limit applications to conform with label restrictions. Do not apply with liquid fertilizer. Can tank mix with glyphosate; If formulation is fully loaded, AMS may be added at
8.5 lb./100 gal. If glyphosate formulation requires an adjuvant plus AMS, add 0.25% NIS plus AMS. Do not use UAN, COC, or MSO.

Anthem pyroxasulfone + fluthiacet-methyl

PRE: 7–13 fl oz/a; Apply 7–8 fl oz/a in coarse-textured soils, 8–10 fl oz/a in medium-textured soils with less than 3% organic matter, and 8–11 fl oz/a in soils with more than 3% organic matter; and apply 9–11 fl oz/a in fine-textured soils with less than 3% organic matter, and 10–13 fl oz/a in soils with more than 3% organic matter.

Remarks: Uniform spray coverage is needed for optimum performance. May be tank mixed with many fluid fertilizers, impregnated on many dry fertilizers, and mixed with many insecticides and fungicides; see label for specific mixing details.

POST: 5–12 fl oz/a; Apply 5–8 fl oz/a for coarse, 6–9 fl oz/a for medium, and 7–12 fl oz/a for fine-textured soils.

Adjuvants: NIS, COC, MSO, N, AMS; Add 0.25% nonionic surfactant or 1–2 pt/a crop oil concentrate or methylated seed oil plus 1–2 qt/a of urea ammonium nitrate or 2-3 lb/a ammonium sulfate.

Crop stage: Can make postemergence applications through the V4 growth stage (fourth visible leaf collar).

Remarks: Uniform spray coverage is needed for optimum performance. May be tank mixed with other herbicides like Atrion, 2,4-D, dicamba, glyphosate, paratraz, glufosinate, and products containing safufencalc (e.g., Sharpen or Verdict). May be tank mixed with glyphosate in Roundup Ready hybrids and Liberty 280 SL on Liberty Link hybrids. May be tank mixed with many fluid fertilizers, impregnated on many dry fertilizers, and mixed with many insecticides and fungicides; see label for specific mixing details.

Anthem ATZ atrazine + pyroxasulfone + fluthiacet-methyl

PRE: 1.5–3.0 pt/a; Rate is dependent upon the soil type and percent organic matter (see label), Crop stage: Can be applied up to 45 days prior to planting through emergence.

Remarks: Uniform spray coverage is needed for optimum performance. May be tank mixed with other products (see label for specific mixing details).

POST: 1.5–3.0 pt/a; Apply 1.5–2.0 pt/a for coarse, 1.75–2.25 pt/a for medium, and 2–3 pt/a for fine-textured soils.

Adjuvants: NIS, COC, MSO, N, AMS; Add 0.25% nonionic surfactant or 1–2 pt/a crop oil concentrate or methylated seed oil plus 1–2 qt/a of urea ammonium nitrate or 2-3 lb/a ammonium sulfate.

Weed timing: Apply when weeds are 4 inches or less in height except for velvetleaf (see label).

Crop stage: Can apply postemergence through the V4 growth stage (fourth visible leaf collar).

Remarks: For enhanced postemergence activity of weeds, may be tank mixed with other herbicides. May be tank mixed with glyphosate in Roundup Ready hybrids and Liberty 280 SL on Liberty Link hybrids (see label for specific mixing details).

Anthem Maxx pyroxasulfone + fluthiacet-methyl

PRE: 2.5–6.5 fl oz/a; Rate is dependent upon the soil type and percent organic matter (see label).

Remarks: Contains twice as much active ingredients as Anthem (apply at 1/2 the rate of Anthem). Uniform spray coverage is needed for optimum performance. May be tank mixed with many fluid fertilizers, impregnated on many dry fertilizers, and mixed with many insecticides and fungicides (see label for specific mixing details).

POST: 2–6 fl oz/a; Apply 2–3.5 fl oz/a for coarse, 2.5–3.5 fl oz/a for medium, and 3.5–6 fl oz/a for fine-textured soils.

Adjuvants: NIS, COC, MSO, N, AMS; Add 0.25% nonionic surfactant or 1–2 pt/a crop oil concentrate or methylated seed oil plus 1–2 qt/a of urea ammonium nitrate or 2-3 lb/a ammonium sulfate.

Crop stage: Can make postemergence applications through the V4 growth stage (fourth visible leaf collar).

Remarks: Contains twice as much active ingredients as Anthem (apply at 1/2 the rate of Anthem). Uniform spray coverage is needed for optimum performance. For enhanced postemergence activity of weeds, may be tank mixed with other herbicides like Aim, 2,4-D, dicamba, glyphosate, paratraz, glufosinate, and products containing safufencalc (e.g., Sharpen or Verdict). May be tank mixed with glyphosate in Roundup Ready hybrids and Liberty 280 SL on Liberty Link hybrids. May be tank mixed with many fluid fertilizers, impregnated on many dry fertilizers, and mixed with many insecticides and fungicides; see label for specific mixing details.

Balance Flexx isoxaflutole

PP1: 3–6 fl oz/a. Labeled for use in Columbia, Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties only. Cannot be used on soils classified as coarse-textured if depth to groundwater is less than 25 feet.

Crop stage: Apply to the soil and uniformly incorporate in the top two inches of soil. Do not incorporate deeper than 2 inches.

Remarks: Effective PRE control of many broadleaf and grass weeds. The addition of atrazine will improve weed control consistency. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and June 1 in Dane, Dodge, Fond du Lac, Grant, Green, Lafayette and Rock counties.
Basis Blend

<table>
<thead>
<tr>
<th>Weed & Crop Description</th>
<th>Active Ingredients</th>
<th>Rate</th>
<th>Post-Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis Blend</td>
<td>rimsulfuron + thifensulfuron</td>
<td>0.825-2.5 oz/a</td>
<td>0.33 oz/a</td>
</tr>
<tr>
<td>BASIS BLEND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weed timing: May not provide control of emerged weeds larger than 1 true leaf stage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop stage: Apply from spike through the 2 leaf-collar growth stage (V-2).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks: Effective PRE control of many broad-leaf and grass weeds. Tank-mixtures with other herbicides or adjuvants are not recommended for early POST applications as crop response symptoms including bleaching, leaf edge necrosis and stunting may result. Do not apply with organophosphate or carbamate insecticides in tank mix or within 7 days of application or crop injury may result. Do not use COC, MSO, or a loaded glyphosate formulation. See label for restrictions related to tile-outfitted fields.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications can only be applied between April 1 and July 31 of any year.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BASIS BLEND

Basis Blend controls many annual weeds but will not control crabbag or nightshade, nor will it control quackgrass, wild proso millet, or woolly cupgrass, which emerge after application. Basis Blend can be tank mixed with atrazine, Callisto, or Horsetail WDG to improve broadleaf activity. Tank mixing Basis Blend with a preemergence grass herbicide will improve crabgrass control (use nonionic surfactant rather than crop oil concentrate if tank mixing with Prowl H20). Tank mixing Basis Blend with dicamba may increase the risk of root-tailing. Because Basis Blend is applied early and has limited residual activity, a cultivation following treatment is often necessary. Accent Q can be applied 14 days or more after Basis Blend for sequential control of grasses. Injury from Basis Blend has occasionally occurred, especially if applied after the 2-collar stage. Applying Basis Blend after Aztec, Force, or Fortress should not cause injury. Basis Blend may only be used on field corn and silage corn.

POST: 0.33 oz/a

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% or crop oil concentrate at 1% to the spray mixture. Also add 2 qt/a 28% nitrogen solution or 2 lb/a ammonium sulfate.

Crop stage: Apply from emergence to 4-leaf (2-collar) stage.

Remarks: Can be tank mixed with atrazine, Calisto, or Horsetail WDG to improve broadleaf activity. Tank mixing with dicamba may increase the risk of root-tailing. Because Basis Blend is applied early and has limited residual activity, a cultivation following treatment is often necessary. Accent Q can be applied 14 days or more after Basis Blend for sequential control of grasses. Injury from Basis Blend has occasionally occurred, especially if applied after the 2-collar stage. Do not apply to hybrids with relative maturities of less than 88 days, or they may be injured. Applying to corn treated with Counter 20G, Lorsban, or Thimet may cause injury. Applying after Aztec, Force, or Fortress should not cause injury. May only be used on field corn and silage corn.

BICEP LITE II MAGNUM

<table>
<thead>
<tr>
<th>Weed & Crop Description</th>
<th>Active Ingredients</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicep Lite II Magnum</td>
<td>s-metolachlor + atrazine + safener</td>
<td>0.9-2.2 qt/a</td>
</tr>
</tbody>
</table>

Crop stage: For best results, apply and blend into the top 2 inches of soil within 14 days before planting. In dry seasons, preplant-incorporated applications will provide better annual weed control than preemergence applications.

Remarks: This premix contains the correct ratio of atrazine to s-metolachlor to maintain the full rate of s-metolachlor with the maximum allowable rate of atrazine for Wisconsin. This premix provides good to excellent control of foxtails, crabbag, fall panicum, and most annual broadleaf weeds but has little effect on quackgrass. Some violetleaf and giant ragweed may escape. Preplant-incorporated applications at 2.2 qt/a will generally provide reasonable yellow nutsedge suppression. Bicep Lite II Magnum is ineffective in peat or muck soils. This formulation contains a chemical safener to protect corn and injury is unlikely. It can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications and can also be impregnated onto certain dry fertilizers. Bicep Lite II Magnum may be used on field corn, silage corn, and sweet corn.
Small grains

Principles of pest management

Stored grain insects

Perennial weeds

Appendix

Corncob grain

Insects

Forages & pastures

Soybean

Corn weeds

PRE: 0.9-2.2 qt/a

Crop stage: Apply after planting but before weed emergence.

Remarks: This premix contains the correct ratio of atrazine to s-metolachlor to maintain the full rate of s-metolachlor with the maximum allowable rate of atrazine for Wisconsin. This premix provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but has little effect on quackgrass. Some velvetleaf and giant ragweed may escape. Preemergence applications only partially control yellow nutsedge. It may be tank mixed with other labeled preemergence herbicides. Bicep Lite II Magnum is ineffective in peat or muck soils. Contains a safener to protect corn, and injury is unlikely. It can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications and can also be impregnated onto certain dry fertilizers. Bicep Lite II Magnum may be used on field corn, silage corn, and sweet corn. This treatment can be split with one-half of the herbicide applied early and the remainder applied at planting. When corn will be planted in 7 days, make a single application either ahead of or at planting. If weeds are present at the time of treatment, include Gramoxone or glyphosate in the spray mixture for improved annual weed burndown. It may be tank mixed with Princep as a conservation tillage treatment.

POST: 0.9-2.2 qt/a

Crop stage: Bicep Lite II Magnum can be applied to corn up to 5 inches tall or as a directed application to corn 12 inches tall. This premix will control small annual broadleaf weeds but generally will not control emerged annual grasses.

Weed timing: Larger emerged weeds need to be controlled by a tank-mix partner. This premix will then provide residual weed control. Include adjuvants according to requirements of the tank-mix partner. Labeled tank-mix partners include glyphosate and Liberty 280 SL on resistant hybrids.

Remarks: This premix contains the correct ratio of atrazine to s-metolachlor to maintain the full rate of s-metolachlor with the maximum allowable rate of atrazine for Wisconsin. This premix provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but has little effect on quackgrass. Some velvetleaf and giant ragweed may escape. Bicep Lite II Magnum is ineffective in peat or muck soils. This formulation contains a chemical safener to protect corn, and injury is unlikely. It can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence applications and can also be impregnated onto certain dry fertilizers. Bicep Lite II Magnum may be used on field corn, silage corn, and sweet corn.

Buctril 2EC

POST: 1.0-1.5 pt/a; Apply 1 pt/a after emergence or 1.5 pt/a after the 4-leaf stage but before tassel emergence. Rates can be increased to 2 pt/a under stressful conditions.

Adjuvants: Do not use adjuvants with Buctril unless required for a tank mixture.

Crop stage: Apply from the 4-leaf stage to before tassel.

Weed timing: When corn is so large that it interferes with the spray pattern, use drop nozzles to direct the herbicide beneath the corn leaves and onto the weeds.

Remarks: To broaden the spectrum of weed control, the labeled rate of Buctril can be tank mixed with 2,4-D or Banvel. However, this tank mixture introduces risk of 2,4-D or Banvel damage. Use application precautions when applying 2,4-D or Banvel. Buctril can also be tank mixed with atrazine, Accent Q, Permit, or Stinger. Buctril usually causes temporary leaf burn, but injury may be excessive if applied before the 4-leaf stage. Buctril tank mixtures that require a surfactant may increase leaf burn. Buctril is a contact herbicide, so good spray coverage is important. Buctril may be used on field corn and silage corn but not on sweet corn.

Buctril 4EC

POST: 0.5 to 1.0 pt/a; Apply 0.5 pt/a after emergence or 1.0 pt/a after the 4-leaf stage but before tassel emergence.

Adjuvants: Do not use adjuvants with Buctril unless required for a tank mixture.

Crop stage: Apply from the 4-leaf stage to before tassel.

Weed timing: When corn is so large that it interferes with the spray pattern, use drop nozzles to direct the herbicide beneath the corn leaves and onto the weeds.

Remarks: To broaden the spectrum of weed control, the labeled rate of Buctril can be tank mixed with 2,4-D or Banvel. However, this tank mixture introduces risk of 2,4-D or Banvel damage. Use application precautions when applying 2,4-D or Banvel. Buctril can also be tank mixed with atrazine, Accent Q, Permit, or Stinger. Buctril usually causes temporary leaf burn, but injury may be excessive if applied before the 4-leaf stage. Buctril tank mixtures that require a surfactant may increase leaf burn. Buctril is a contact herbicide, so good spray coverage is important. Buctril may be used on field corn and silage corn but not on sweet corn.

Bullet

PPI: 2.5-4.0 qt/a

Crop stage: Apply to dry soil within 7 days before planting, blending the herbicide into the top 1-2 inches of soil during seedbed preparation. In dry seasons, preplant-incorporated applications will provide better annual weed control than preemergence applications.

Remarks: These treatments provide good to excellent control of foxtails, crabgrass, fall panicum, and most broadleaf annual weeds but have little effect on quackgrass. Some velvetleaf may escape. Bullet may be tank mixed with other labeled preemergence herbicides. A reduced rate of 2.0 qt/a is labeled if followed by a post-emergence application of glyphosate in glyphosate-resistant corn. Bullet may also be tank mixed with glyphosate and applied early postemergence. These treatments are ineffective on peat or muck soils. Bullet generally doesn’t injure corn. However, under some circumstances, corn injury is possible. Bullet can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence application. Preplant-incorporated Bullet can also be impregnated onto certain dry fertilizers. Bullet may be used on field corn, silage corn, and sweet corn.

PRE: 2.5-4.0 qt/a

Crop stage: Apply after planting but within 5 days after the last tillage for weed control.

Remarks: See PPI remarks above. Apply 6-8 pt/a Bullet preemergence. See label for early preplant rates. If weeds are present at the time of treatment, include Gramoxone or glyphosate in the spray mixture for improved annual weed burndown. Bullet may be tank mixed with Princep as a conservation tillage treatment.

POST: 2.5-4.0 qt/a

Crop stage: Can be applied to corn up to 5 inches tall. This premix will control small annual broadleaf weeds, but in general will not control emerged annual grasses.

Remarks: See PPI remarks above.

Cadet

fluthiacet

POST: 0.4-0.9 fl oz/a; Apply 0.4 to 0.6 fl oz/a in glyphosate mixtures or 0.6-0.9 fl oz/a if applied alone or in other tank mixtures.

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% or crop oil concentrate at 1-2 pt/a to the spray solution; 28% nitrogen solution at 1-2 qt/a or ammonium sulfate at 1-2 lb/a may also be added. If mixed with a fully loaded glyphosate, only add ammonium sulfate as required for glyphosate.

Crop stage: Apply from V2 until 48 inches tall or tasseling, whichever occurs first.
Callisto

mesotrione

PRE: 5.0-7.7 fl oz/a; Apply 6.0-7.7 fl oz/a or 5-6 fl oz/a when tank mixed with an atrazine-containing herbicide.

Crop stage: Apply after planting but before weed emergence.

Remarks: Can be tank mixed with other preemergence grass herbicides for broad-spectrum weed control. Corn has good tolerance to preemergence applications. Do not tank mix with grass herbicides that have an emulsifiable concentrate formulation and apply after corn has spiked because injury may occur. Callisto drift will bleach the leaves of sensitive plants such as peas. Do not apply if wind speed exceeds 10 mph. Callisto can be applied to field, silage, seed, and sweet corn.

POST: 3 fl oz/a

Adjuvants: COC, AMS, N; Add crop oil concentrate at 1% plus either 28% fertilizer at 2.5% or ammonium sulfate at 8.5 lb/100 gal (do not add nitrogen adjuvants when treating sweet corn). Do not use methylated seed oil as an adjuvant because injury may occur.

Crop stage: Apply from emergence to 30 inches tall or the 8-collar (V8) stage.

Weed timing: Controls many annual broadleaf weeds, but will not control most grasses.

Remarks: Labeled for tank mixtures with Basagran, glyphosate (Roundup Ready only), and Liberty 280 SL (Liberty Link only). Consult the label for adjuvant recommendations for Liberty 280 SL and glyphosate tank mixtures. Syngenta and DuPont have supplemental labels for tank mixing Callisto with Accent Q, Basis Blend, Steadfast Q, and Stout. Syngenta recommends a full Callisto rate while Du Pont recommends a reduced rate for many broadleaf weeds. Corn has good tolerance to postemergence applications of Callisto, but occasional yellowing may be seen under stressful conditions. Postemergence tank mixes of Callisto and emulsifiable concentrate formulations of preemergence grass herbicides may cause injury. Consult the label for adjuvant recommendations to reduce this risk. Do not apply if the corn was treated with Counter 20G because injury may occur. Corn may also be injured if Lorsban was applied. Do not tank mix Callisto with organophosphate or carbamate insecticides or apply these insecticides within 7 days of Callisto because injury may occur. Callisto drift will bleach the leaves of sensitive plants such as peas. Do not apply Callisto if wind speed exceeds 10 mph. Callisto can only be applied to field, silage, seed, and sweet corn.

Callisto GT

mesotrione + glyphosate

POST: 2 pt/a

Adjuvants: Use NIS at 0.25-0.5% v/v plus AMS at 8.5-17 lb/100 gal. COC at 1% v/v may be substituted for NIS, but may cause temporary crop injury. Do not use MSO or injury will result. Do not use liquid fertilizer or UAN as the carrier.

Crop stage: Apply postemergence before corn reaches 30 inches or V8, whichever comes first. Do not apply more than one application per year.

Weed timing: Apply before weeds exceed 4 inches in height. Susceptible broadleaf weeds that emerge soon after an application may be controlled for an additional 2-4 weeks.

Remarks: Use only on glyphosate-tolerant corn hybrids. Will not control glyphosate-resistant grass weeds. Broadleaf control will be improved by tank mixtures with atrazine, but timing and rate restrictions of atrazine must be followed. Can be tank-mixed with several other POST corn herbicides including Basagran, Buctril, Clarity, Status, and Northstar for improved broadleaf control, but do not tank-mix with additional emulsifiable concentrate grass herbicides. Do not apply more than one time per year, and do not exceed 0.24 lb mesotrione or 6 lb glyphosate acid per acre per year in combination with other mesotrione- and glyphosate-containing herbicides. Do not apply to corn treated with Counter, Lorsban, or any other OP containing soil insecticide. Do not tank-mix with any OP or carbamate insecticides, and do not apply within 7 days prior or after a foliar OP or carbamate insecticide application. Do not graze treated areas for 45 days.

Callisto Xtra

mesotrione + atrazine

POST: 20-24 fl oz/a; Increasing the rate to 24 fl oz/a will improve residual activity.

Adjuvants: COC, N, AMS, NIS; Add crop oil concentrate at 1% plus either 28% fertilizer at 2.5% or ammonium nitrate at 8.7-17 lb/100 gallons of spray solution. Do not use nitrogen fertilizers when treating sweet corn. Nonionic surfactants may be substituted for crop oil concentrates but weed control may be reduced. Methylated seed oils should not be used due to increased crop injury.

Crop stage: Apply after emergence but before corn exceeds 12 inches in height.

Weed timing: Controls many annual broadleaf weeds but will require a tank-mix partner for grass control.

Remarks: Callisto Xtra can be tank mixed with numerous herbicides for improved burndown and residual weed control. Consult the label for adjuvant recommendations when tank mixing with glyphosate (Roundup Ready only) or Liberty 280 SL (Liberty Link only). Corn has good tolerance, but bleaching can be observed under certain environmental conditions; the injury is typically transitory and does not affect yields. Do not tank mix with emulsifiable grass herbicides unless specifically addressed in the label or crop injury could occur. Do not apply in liquid fertilizer or to corn treated with Counter 20G or Lorsban or severe crop injury could occur. Do not apply in a tank mix with organophosphate or carbamate insecticides or apply postemergence within 7 days before or after an organophosphate or carbamate insecticide application as crop injury could occur.

Capreno

thiencarbazone + tembotrione + safener

PRE: 3-6 fl oz/a

Adjuvants: Adjuvants are only needed if weeds have emerged, see POST section for adjuvant recommendations.

Crop stage: Apply prior to crop emergence.

Weed timing: Provides control of many broadleaf weeds and several grass weeds but may not provide acceptable season-long residual grass control.

Remarks: If used preemergence it cannot be applied postemergence. The Laudis component of Capreno is synergized by 0.5 lb/a atrazine and improves the consistency of control, which may help burndown activity in no-till applications. Do not use Capreno with Lorsban, Counter 20G, Thimet, or Dyfonate or injury may result. Can be used on field corn, silage corn, and corn grown for seed.

POST: 3 fl oz/a

Adjuvants: COC, N, AMS; Add 1% crop oil concentrate with a minimum of 1.25 pt/a plus 1.5 qt/a 28% nitrogen solution or ammonium sulfate at 1.5 lb/a.

Crop stage: Apply from the 1-collar through 6-collar (V1-V6) stage.

Weed timing: Provides good control of many broadleaf weeds and several grass weeds. Apply before broadleaf weeds exceed 6 inches.

Remarks: The Laudis component of Capreno is synergized by 0.5 lb/a atrazine and improves the consistency of control. Atrazine cannot be used in tank mixture if corn is taller than 12 inches, but Buctril can be used at 6 fl oz/a. In Liberty Link or glyphosate-resistant corn, Laudis could also be mixed at 2 fl oz/a with Liberty 280 SL or at 3 fl oz/a with glyphosate, respectively. Check the herbicide label for specific adjuvant recommendations for Liberty 280 SL or glyphosate mixtures. Do not use Capreno if Lorsban, Counter 20G, Thimet, or Dyfonate was applied or injury may result. Can be used on field corn, silage corn, seed corn,
Remarks: Effective PRE control of many broadleaf and grass weeds. The addition of atrazine will improve weed control consistency. When weeds are present at the time of treatment and prior to corn emergence, add a crop oil concentrate or methylated seed oil for bumdown of labeled weeds 3 inches or less in height. When mixing with liquid nitrogen fertilizer or certain glyphosate formulations, substitute a non-ionic surfactant for crop oil concentrate. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.

POST: See PPI

Adjuvants: None.

Weed timing: May not provide control of emerged weeds larger than 1 true leaf stage.

Crop stage: Apply from spike through the 2 leaf-collar growth stage (V-2).

Remarks: Effective PRE control of many broadleaf and grass weeds. Tank-mixtures with other herbicides or adjuvants are not recommended for early POST applications as crop response symptoms including bleaching, leaf edge necrosis, and stunting may result. Do not apply with organophosphate or carbamate insecticides in tank mix or within 7 days of application or crop injury may result. Do not use COC, MSO, or a loaded glyphosate formulation. See label for restrictions related to tile-outletted fields. Applications can only be applied between April 1 and July 31 of any year.

Degree XTRA acetochlor + atrazine + safener

PPI: 2.9-3.7 qt/a

Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting.

Remarks: Preplant surface-applied acetochlor + atrazine can be applied up to 30 days before planting, but it gives the best control when applied closer to planting and before weeds emerge. If weeds are present at the time of treatment, include glyphosate, Gramoxone, or 2,4-D in the spray mixture for annual weed bumdown. Several formulations of this premix are marketed. The rates of Degree XTRA closely match atrazine rate limits with the proper amount of acetochlor for good grass control. Acetochlor + atrazine provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but will have little effect on quackgrass. Some velvetleaf may escape. Preplant incorporated applications provide reasonable nitsedge control. Preemergence applications provide only partial yellow nitsedge control. Acetochlor + atrazine can be tank mixed with Princep to enhance broadleaf weed control. Degree XTRA also recommends Hornet WDG and Python tank mixtures. All formulations contain a chemical safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. Acetochlor + atrazine may be used on field corn, seed corn, and sweet corn.

PRE: 2.9-3.7 qt/a

Crop stage: Apply after planting and within 5 days of the last tillage.

Remarks: See PPI remarks above.

POST: 2.9 to 3.7 qt/a

Crop stage: Can be applied to corn from emergence to 11 inches tall unless limited by a tank-mix partner. This premix will control small annual broadleaf weeds but generally will not control emergent annual grasses unless they have only one or two leaves. Use water as a carrier when applying these postemergence treatments.

Weed timing: Larger emerged weeds need to be controlled by a tank-mix partner. Acetochlor + atrazine will then provide residual weed control. Include adjuvants according to requirements of the tank-mix partner. Acetochlor + atrazine labels vary, but most allow tank mixtures with many postemergence grass and broadleaf herbicides, including glyphosate and Liberty 280 SL, on resistant hybrids.

Remarks: See PPI remarks above.

Diflexx dicamba + safener

PRE: 8-16 fl oz/a.

Crop stage: Can be applied up to 14 days before, during, or after planting but before corn emergence.

Remarks: Will control emerged weeds and provide residual control of labeled weed species. Use the higher rates on soils high in organic matter.

POST: 6-16 fl oz/a.

Adjuvants: NIS, COC, MSO, N, AMS; Add a nonionic surfactant at 0.25% v/v or crop oil concentrate or Methylated seed oil at 1% v/v plus either N (2-4 qt/a) or AMS (6.5-17 lbs/100 gal).

Crop stage: Apply when corn is at spike through the V10 growth stage or 36 inch tall corn, whichever occurs first.

Weed timing: Best weed control and yield protection results when weeds are less than 3 inches tall.

Remarks: Provides effective broadleaf control and has reduced injury potential compared to dicamba products without the safener. Soybean, tobacco and most vegetable are extremely sensitive to dicamba, so avoid drift. Do not apply when soybeans are nearby if corn is taller than 24 inches, soybean is taller than 10 inches, or the
soybean has begun to bloom. Use the higher rates on soils high in organic matter.

Diflexx Duo

- dicamba + tembotrione + safener

POST: 24-40 fl oz/a.

Adjuvants: COC, MSO, N, AMS; Add crop oil concentrate or methylated seed oil at 1% v/v plus either N (1.5 qt/a) or AMS (8.5-17 lbs/100 gal).

High surfactant oil concentrates (HSOC) may also be used if they meet the criteria on label.

Crop stage: Apply from emergence to before the V7 growth stage of 36 inches tall, whichever occurs first.

Weed timing: Best weed control and yield protection results when weeds are less than 3 inches tall.

Remarks: Provides effective broadleaf and grass control and has reduced injury potential compared to dicamba products without the safener. Soybean, tobacco and most vegetable crops can be used if they meet the criteria on label.

Dual II Magnum

- s-metolachlor + safener

PPi: 1.0-2.0 pt/a; On soils with 6 to 20% organic matter, use up to 2.5 pt/a.

Crop stage: Apply within 14 days before planting, blending the herbicide into the top 2 inches of soil during seedbed preparation. In dry seasons, preplant-incorporated applications will provide better annual weed control than preemergence applications.

Remarks: It can be tank mixed with atrazine, Hornet, Princep, or Python for added broadleaf weed control. Both formulations contain a chemical safener to protect corn. However, treated corn sprouting in cold, wet soil may occasionally leave out underground. It can be mixed with liquid fertilizer for simultaneous application and preplant-incorporated Dual II Magnum can also be incorporated onto certain dry fertilizers. Can be used on field corn, silage corn, and sweet corn.

PRE: See PPi.

Crop stage: Apply after planting but before corn or weeds emerge.

Remarks: See PPi remarks above.

POST: See PPi.

Adjuvants: Include adjuvants according to requirements of the tank-mix partner. Only use water as a carrier when applying Dual II Magnum post-emergence; liquid fertilizer is not permitted as a carrier because of the risk of crop injury.

Crop stage: Can be applied to corn up to 40 inches tall. Drop nozzles are recommended for applications to corn taller than 5 inches.

Remarks: Will not control emerged weeds so a tank-mix partner is generally necessary for initial control. Dual II Magnum will then provide residual grass control. Labeled tank mixes include Accent Q, Liberty 280 SL, and glyphosate on resistant hybrids. It can be tank mixed with atrazine, Hornet, Princep, or Python for added broadleaf weed control. Can be used on field corn, silage corn, and sweet corn.

Enlist Duo

- glyphosate + 2,4-D Choline

PRE/ Burndown rate: 3.5-4.75 oz/a; Can be applied PPI/PRE and POST as long as no more than 1.33 pt/a is applied post and less than 2.5 pt/a is applied in the entire season.

Adjuvants: See label or look up allowed adjuvants at www.EnlistTankMix.com

Crop stage: Apply 7-14 days before planting corn or 3-5 days after planting but before corn emerges.

Remarks: Provides control of common annual and perennial weeds. Currently only available as a burndown application. Do not use on sandy soils with less than 1% organic matter. List of products that can be tank mixed with Enlist Duo soybeans can be found at www.EnlistTankMix.com. Apply in water at 10 to 15 gallons per acre of spray solution.

Fierce

- flumioxazin + pyroxasulfone

Burndown rate: 3.0-4.5 oz/a

PRE: 3.0-4.5 oz/a; Apply 3.0 to 4.5 oz/a in the fall, and 3.0 oz/a in the spring.

Crop stage: Fierce may be applied in the fall or in the spring at 3.0 oz/a as an early preplant burndown 7-30 days ahead of planting field corn in no-till and minimum till corn systems. If rates higher than 3.0 oz/a are used, or if herbicide is incorporated with tillage, then a minimum of 30 days is required before planting. If Fierce is applied in the fall or winter following crop harvest, do not apply before October 15th and do not apply to frozen or snow-covered ground.

Remarks: Fierce provides selective burndown and residual weed control in minimum and no-till field corn systems. Do not use on popcorn, sweet corn, or seed corn. Is primarily to be used in minimum till and no-till field corn systems. Fields can be cultivated following applications, but the minimum preplant interval is 30 days if the herbicide is incorporated, and incorporation will reduce residual weed control. Can be tank mixed with several other herbicides, including glyphosate and 2,4-D, to enhance burndown activity. Fierce does not require any spray additives; however, spray adjuvants should be used according to the label of the tank-mix partner. Do not use on soils with less than 1% organic matter unless at least 1/2 inch of rainfall occurs before planting.

FullTime NXT

- acetylchlor + atrazine + safener

PPI: 2.9-3.7 qt/a

Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting.

Remarks: Preplant surface-applied acetylchlor + atrazine can be applied up to 30 days before planting, but it gives the best control when applied closer to planting and before weeds emerge. If weeds are present at the time of treatment, include glyphosate, Gramoxone, or 2,4-D in the spray mixture for annual weed burndown. Several formulations of this premix are marketed. The rates of Degree XTRA closely match atrazine rate limits with the proper amount of acetylchlor for good grass control. Acetylchlor + atrazine provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but will have little effect on quackgrass. Some velvetleaf may escape. Preplant incorporated applications provide reasonable nutsedge control. Preemergence applications provide only partial yellow nutsedge control. Acetylchlor + atrazine can be tank mixed with Princep to enhance broadleaf weed control. Degree XTRA also recommends Hornet WDG and Python tank mixes. All formulations contain a chemical safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. Acetylchlor + atrazine may be used on field corn, seed corn, and sweet corn.

PRE: 2.9-3.7 qt/a

Crop stage: Apply after planting and within 5 days of the last tillage.

Remarks: See PPI remarks above.

POST: 2.9-3.7 qt/a

Crop stage: Can be applied to corn from emergence to 11 inches tall unless limited by a tank-mix partner. This premix will control small annual broadleaf weeds but generally will not control emerged annual grasses unless they have only one or two leaves. Use water as a carrier when applying these postemergence treatments.

Weed timing: Larger emerged weeds need to be controlled by a tank-mix partner. Acetylchlor + atrazine will then provide residual weed control. Include adjuvants according to requirements of the tank-mix partner. Acetylchlor + atrazine labels vary, but most allow tank mixtures with many postemergence grass and broadleaf herbicides,
including glyphosate and Liberty 280 SL, on resistant hybrids.

Remarks: See PPI remarks above.

G-Max Lite

PPI: 2.0-3.5 pt/a
Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting. In dry seasons, preplant-incorporated treatment provides better annual weed control than preemergence treatment.

Remarks: The G-Max Lite premix contains the correct ratio of atrazine to Outlook to maintain the full rate of both components to fit within Wisconsin’s Atrazine Rule. G-Max Lite provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but has little effect on quackgrass. Some velvetleaf and giant ragweed may escape. The maximum rate applied preplant-incorporated generally provides reasonable yellow nutsedge control, but preemergence-applied treatments only partially control yellow nutsedge. G-Max Lite is not recommended on soils with more than 20% organic matter. It generally does not injure corn, but under some circumstances corn injury is possible. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. It may be used on field corn, silage corn, seed corn, and sweet corn.

PRE: 2.0-3.5 pt/a
Crop stage: Apply after planting and before weed and corn emergence.

Remarks: Use 3.5 pt/a G-Max Lite to compensate for early preplant treatment and/or heavy crop residue. Usually a split application where one-half of the herbicide is applied early and the remainder applied at planting provides better weed control. When corn will be planted in 7 days, make a single application either ahead of or at planting. If weeds are present at the time of treatment, include Gramoxone or glyphosate in the spray mixture for improved annual weed burndown. Early preplant treatment is not recommended on coarse-textured soils. The G-Max Lite premix contains the correct ratio of atrazine to Outlook to maintain the full rate of both components to fit within Wisconsin’s Atrazine Rule. Provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but has little effect on quackgrass. Some velvetleaf and giant ragweed may escape. Preemergence-applied treatments only partially control yellow nutsedge. G-Max Lite is not recommended on soils with more than 20% organic matter. It generally does not injure corn, but under some circumstances corn injury is possible. G-Max Lite can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. It may be used on field corn, silage corn, seed corn, and sweet corn.

Gramoxone SL

Burndown rate: 2.0-4.0 pt/a
PRE: 2-0.4 pt/a; Apply 2.0-2.5 pt/a when weeds are 1-3 inches tall, 2.5-3.0 pt/a when weeds are 3-6 inches tall, and 3.0-4.0 pt/a when weeds are taller than 6 inches.

Adjuvants: NIS, COC; Include nonionic surfactant at 0.125% or crop oil concentrate at 1% to the spray mixture.

Crop stage: Apply preplant or before corn has emerged.

Remarks: Can be included with preplant residual herbicides to provide burndown of existing vegetation. Where a preplant treatment is made as a split application, include with the first application, but only if weeds are present at the time of treatment. Annual weeds emerging after application must be controlled by the residual herbicide. Tank mixing with atrazine or Princep can increase burndown activity. Use a minimum of 10 gal/a of water at 30-50 psi pressure with ground applications. Flat fan nozzles are more effective than flood nozzles at delivering the fine spray droplets necessary for thorough spray coverage. If applying less than 20 gal/a of water, only use flat fan nozzles.

Halex GT

POST: 3.6-4 pt/a

Adjuvants: NIS, AMS; Add nonionic surfactant at 0.25-0.5% and ammonium sulfate at 8.5-17 lb/100 gal. Use of 28% nitrogen solution is not recommended because of the risk of injury.

Crop stage: Apply from emergence to 30 inches tall or the 8-collar (V8) stage.

Weed timing: Apply before grass and broadleaf weeds exceed 4 inches tall. Apply before weeds exceed 10 inches when tank mixed with atrazine.

Remarks: This premix contains about a half rate of Dual and a full rate of Callisto, which will provide residual weed control if rain is received after application. Halex GT will provide postemergence control of most annual weeds. The timing may be too early for optimal long-term control of perennials although existing shoots will be killed. The glyphosate rate in this premix will control weeds at the 4-inch stage. The Callisto component provides a second ingredient with postemergence broadleaf activity, which would improve control of glyphosate-resistant weeds. Halex GT can be applied following many preemergence herbicides. Zemax at 1.6 qt/a or Lumex at 2 qt/a are the maximum rates of these herbicides that may be used prior to Halex GT applications because they also contain mesotrione. Halex GT can be tank mixed with atrazine for improved weed control, and 0.25-0.5 lb/a are recommended. Drift from Halex GT can injure adjacent crops or vegetation. Thoroughly clean the spray tank after use because residues can injure glyphosate- or Callisto-sensitive crops. Do not tank mix with emulsifiable concentrate grass herbicides because injury may occur. Halex GT may injure corn if the corn was treated with Counter 20G, Lorsban, or other organophosphate soil insecticides or applied within 7 days of a foliar organophosphate insecticide.

Harmony SG

POST: 0.125 oz/a

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% or crop oil concentrate at 1% plus either 2-4 qt/a 28% nitrogen solution or 2-4 lb/a of ammonium sulfate. With glyphosate tank mixtures, only ammonium sulfate is needed if the glyphosate is fully loaded with surfactant.

Crop stage: Apply to 1- to 5-collar (V1 to V5)
Harness XTRA acetochlor + atrazine + safener
PPI: 1.8-2.3 qt/a
Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting.
Remarks: Rates closely match atrazine rate limits with the proper amount of acetochlor for good grass control. Can be tank mixed with Princep to enhance broadleaf weed control. All formulations contain a chemical safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. Harness XTRA can be used on field corn, seed corn, and sweet corn. Harness XTRA 5.6L contains a higher concentration of atrazine than Harness XTRA. To stay below Wisconsin’s atrazine rate limits, the rates of Harness XTRA 5.6L that can be used do not provide the desired amount of acetochlor.
PRE: 1.8-2.3 qt/a
Crop stage: Apply after planting and within 5 days of the last tillage.
Remarks: See PPI remarks above.
POST: 1.8-2.3 qt/a
Crop stage: Can be applied to corn from emergence to 11 inches tall unless limited by a tank-mix partner.
Weed timing: This premix will control small annual broadleaf weeds but generally will not control emerged annual grasses unless they have only one or two leaves. Larger emerged weeds need to be controlled by a tank-mix partner. All formulations contain a safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer for simultaneous application. Harness XTRA may be used on field corn, seed corn, and sweet corn. Include adjuvants according to requirements of the tank-mix partner. Acetochlor + atrazine labels vary but most allow tank mixtures with many postemergence grass and broadleaf herbicides, including glyphosate and Liberty 280 SL, on resistant hybrids. Use water as a carrier when applying these postemergence treatments. Using liquid fertilizer as a carrier may cause severe crop injury. Acetochlor + atrazine and the tank mixtures may cause temporary leaf burn. Harness XTRA 5.6L that can be used do not provide the desired amount of acetochlor.

Hornet WDG flumetsulam + clompyralid
PPI: 3-5 oz/a
Crop stage: Apply up to 30 days before planting and incorporate into the top 2-3 inches of soil.
Weed timing: Provides residual control of many annual broadleaf weeds.
Remarks: In dry seasons, preplant-incorporated applications will provide better annual weed control than preemergence applications. Because it is a broadleaf herbicide, it will generally be tank mixed with grass herbicides such as acetochlor.
Dual II Magnum, or Outlook. Do not use on peat or muck soils or on soils with pH less than 5.9 and organic matter above 5% because of reduced weed control. The flumetsulam component in this premix can cause corn stunting. The injury may be due to corn emerging in cold soils or to other factors. To minimize the risk of injury, plant corn at least 1.5 inches deep and use on soils with at least 1.5% organic matter. Dow does not recommend using if Counter 20G or Thimet have been applied (but the Counter 20G label allows Hornet use with banded Counter 20G applications).

Apply other soil insecticides in a T-band to avoid crop injury. Do not use if soil pH is greater than 7.8 and organic matter is less than 3% to avoid crop injury. Can be applied with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous applications, but the water soluble packages need to be slurried before mixing or impregnation. May be used on field corn but not sweet corn or popcorn.

PRE: 4-5 oz/a

Crop stage: Apply after planting but before weed emergence.

Weed timing: Provides residual control of many annual broadleaf weeds.

Remarks: See PPI remarks above.

POST: 2-6 oz/a; Application rates for spike stage are 3-6 oz/a. All other POST timings have a rate range of 2-5 oz/a.

Adjuvants: NIS, COC, N; Add nonionic surfactant at 0.25% or crop oil concentrate at 1% to the spray mixture. When dry, apply 2.5% of 28% nitrogen solution.

Crop stage: Applications can be made from emergence through the 6-collar (V6) stage. Spike stage is from emergence to 2 inches, but before the first leaf unfurls.

Weed timing: Spike stage applications will control many annual broadleaf weeds if adequate rainfall occurs before weed emergence.

Remarks: Can be tank mixed with other labeled herbicides to improve control, but do not mix with BASAGRA. Do not apply Hornet if Counter 20G or Thimet were applied. May be used on field and silage corn.

Impact

POST: 0.5-1.0 fl oz/a; Use 0.5 fl oz/a if rotating to snap beans.

Adjuvants: MSQ, COC, N, AMS; Add 1.0-1.5% methylated seed oil (preferred) or crop oil concentrate. Also add 1.25-2.5% of 28% nitrogen solution or 8.5-17 lb/100 gal of ammonium sulfate.

Crop stage: Apply from emergence until 45 days after corn harvest or V-8 corn, whichever comes first.

Remarks: A preemergence grass herbicide application or postemergence grass herbicide tank mix may be advised for total grass weed control. Topramazon works synergistically with atrazine, so tank mixtures with 0.25-1.0 lb/a atrazine are recommended. It can also be tank mixed with most other postemergence herbicides, including glyphosate and Liberty 280 SL, on resistant hybrids. Corn has good tolerance to topramazon, but under stressful conditions, nonionic surfactant should be used in tank mixtures with 2,4-D or dicamba to reduce the risk of injury. Topramazon has no insecticide use restrictions. Drift will bleach the leaves of sensitive plants. Do not apply if wind speed exceeds 10 mph.

Topramazon is rainfast in 1 hour. Topramazon can be used on field corn (grain, silage, and seed) and sweet corn.

Instigate

PPI: 5.25-6.0 oz/a

Crop stage: Apply up to 14 days preplant.

Remarks: Will fit well in no-till systems that require a burndown of existing vegetation prior to corn planting and will provide residual activity of several grass and broadleaf weeds. Burndown and residual weed control activity will be greatly enhanced by the addition of other broadleaf herbicides like paraquat, glyphosate, and/or 2,4-D products, and the residual activity will be greatly enhanced by the addition of acetanilide + atrazine premix herbicides. See tank-mix instructions to combine with these products. Herbicide ingredients (rimsulfuron and mesotrione) are similar to those in Realm Q herbicide; however, Instigate does not include the safener (isoxadifen) and therefore Realm Q should be used after V-2 corn. Do not mix tank mix with foliar-applied organophosphate insecticides such as Lorsban, malathion, or parathion, as severe crop injury may occur. To avoid crop injury or antagonism, apply these products at least 7 days before or 3 days after the application of Instigate. Do not apply the organophosphate insecticide Counter 20G within 60 days of a preemergence or preplant application since crop injury may result. Do not apply Instigate within 45 days of crop emergence where the organophosphate insecticide Counter 20G was applied as a treatment since crop injury may occur. Do not apply to coarse-textured soil with less than 1% organic matter. Do not apply to corn grown for seed, popcorn, ornamental corn, or sweet corn.

Keystone LA NXT

acethochlor + atrazine + safener

PPI: 1.6-3.0 qt/a

Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting.

Remarks: Keystone NXT formulations contain a higher concentration of atrazine than Keystone LA NXT. To stay below Wisconsin’s atrazine rate limits, the rates of Keystone LA NXT that can be used do not provide the desired amount of acethochlor. Acetochlor + atrazine provides good to excellent control of foxtails, crabgrass, fall panicum, and most annual broadleaf weeds but will have little effect on quackgrass. Some velvetleaf may escape. Preplant incorporated applications provide reasonable nitsedge control. Preemergence applications provide only partial yellow nitsedge control. Acetochlor + atrazine can be tank mixed with Princep to enhance broadleaf weed control. All formulations contain a chemical safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer or impregnated onto certain
dry fertilizers for simultaneous application. Acetochlor + atrazine may be used on field corn, seed corn, and sweet corn.

PRE: 1.6-3.0 qt/a

Crop stage: Apply after planting and within 5 days of the last tillage.

Remarks: Keystone NXT formulations contain a higher concentration of atrazine than Keystone LA NXT To stay below Wisconsin’s atrazine rate limits, the rates of Keystone LA NXT that can be used does not provide the desired amount of acetoehlor. Acetochlor + atrazine provides good to excellent control of foxtails, crabgrass, fall panicle, and most annual broadleaf weeds but will have little effect on quackgrass. Some velvetleaf may escape. Preplant incorporated applications provide reasonable nutsedge control. Preemergence applications provide only partial yellow nutsedge control. Acetochlor + atrazine can be tank mixed with Princep to enhance broadleaf weed control. All formulations contain a safener to protect corn from herbicide injury. It can be mixed with liquid fertilizer or impregnated on certain dry fertilizers for simultaneous application. Acetoehlor + atrazine may be used on field corn, seed corn, and sweet corn.

POST: 1.6-3.0 qt/a

Crop stage: Can be applied to corn from emergence to 11 inches tall unless limited by a tank-mix partner. This premix will control small annual broadleaf weeds but generally will not control emerged annual grasses unless they have only one or two leaves. Use water as a carrier when applying these postemergence treatments.

Weed timing: Larger emerged weeds need to be controlled by a tank-mix partner. Acetochlor + atrazine will then provide residual weed control. Include adjuvants according to requirements of the tank-mix partner. Acetochlor + atrazine labels vary, but most allow tank mixtures with many postemergence grass and broadleaf herbicides, including glyphosate and Liberty 280 SL, on resistant hybrids.

Remarks: Keystone LA NXT closely matches our resistant hybrids. Acetochlor + atrazine may be used on field corn, seed corn, and sweet corn.

Lariat

PPi: 2.5-4.0 qt/a

Crop stage: Apply to dry soil within 7 days before planting, blending the herbicide into the top 1-2 inches of soil during seedbed preparation. In dry seasons, preplant-incorporated applications will provide better annual weed control than preemergence applications.

Remarks: These treatments provide good to excellent control of foxtails, crabgrass, fall panicle, and most broadleaf annual weeds but have little effect on quackgrass. Some velvetleaf may escape. Lariat may be tank mixed with other labeled preemergence herbicides. A reduced rate of 2.0 qt/a is labeled if followed by a post-emergence application of glyphosate in glyphosate-resistant corn. May also be tank mixed with glyphosate and applied early postemergence. These treatments are ineffective on peat or muck soils. Lariat generally doesn't injure corn. However, under some circumstances, corn injury is possible. Can be mixed with liquid fertilizer for simultaneous preplant-incorporated or preemergence application. Preplant-incorporated Bullet can also be impregnated on certain dry fertilizers. Lariat may be used on field corn, silage corn, and sweet corn.

PRE: 2.5-4.0 qt/a

Crop stage: Apply after planting but within 5 days after the last tillage for weed control.

Remarks: See PPi remarks above. Apply 6-8 pt/a Lariat preemergence. See label for early preplant rates. If weeds are present at the time of treatment, include Gramoxone or glyphosate in the spray mixture for improved annual weed burndown. Lariat may be tank mixed with Princep as a conservation tillage treatment.

POST: 2.5-4.0 qt/a

Crop stage: Can be applied to corn up to 5 inches tall. This premix will control small annual broadleaf weeds but in general, will not control emerged annual grasses.

Remarks: See PPi remarks above.

Laudis

POST: 3 fl oz/a

Adjuvants: COC, MSO, N, AMS; Add 1% crop oil concentrate or methylated seed oil plus 1.5 qt/a 28% nitrogen solution or ammonium sulfate at 8.5 lb/100 gal. Methylated seed oil is preferred over crop oil concentrate if Laudis is being used as a one-pass postemergence program to maximize the grass weed control.

Crop stage: Apply from emergence up to the 8-collar (V-8) stage.

Weed timing: Apply before broadleaf weeds exceed 6 inches tall.

Remarks: Using Laudis in a two-pass program when it is applied after a preemergence grass herbicide may be preferred. If so, crop oil could be used as the adjuvant as broadleaf weeds are the primary target. Laudis is synergized with 0.5 lb/a atrazine, which would be a common tank mixture. If corn is taller than 12 inches tall and atrazine cannot be used, 6 oz/a of Buctril can be used instead of atrazine. Laudis can be tank mixed with Accent Q, Option, Stout, and Steadfast Q for additional grass activity. In resistant corn, Laudis could also be mixed at 2 fl oz/a with Liberty 280 SL or at 3 fl oz/a with glyphosate. With the safener in Laudis, field corn has excellent tolerance. Laudis can be applied to field, silage, seed, and sweet corn.

Liberty 280 SL

Burndown rate: 29-36 fl oz/a

POST: 22 fl oz/a

Adjuvants: AMS; The Liberty 280 SL formulation contains surfactants. Add 3 lb/a of ammonium sulfate prior to adding Liberty 280 SL to the spray tank.

Crop stage: Apply between dawn and 2 hours before sunrise. Apply from emergence up to the V-7 stage or 24 inches tall.

Weed timing: Liberty 280 SL is a nonselective contact herbicide that controls many annual weeds and will burn the top growth of perennial weeds.

Remarks: Can be tank mixed with atrazine or most other post-emergence herbicides to enhance weed control or provide residual activity. A second application of Liberty can be made if needed but use drop nozzles after the V-7 stage but before corn exceeds 36 inches. Apply in a minimum of 15 gal/a for good spray coverage. Do not apply if wind speed exceeds 10 mph. Liberty is rainfast in 4 hours.

Lumax EZ

s-metolachlor + atrazine + mesotrione

PRE: 2.7 qt/a-3.25 qt/a; Apply 2.7 qt/a on soils with less than 3% organic matter, and 3.25 qt/a on soils with 3% organic matter or more.

Crop stage: Apply after planting but before grass weeds emerge.

Remarks: Lumax EZ can be applied before or after planting and should be tank mixed with glyphosate or Gramoxone to control emerged weeds.

Liberty 280 SL

Burndown rate: 29-36 fl oz/a

POST: 22 fl oz/a

Adjuvants: AMS; The Liberty 280 SL formulation contains surfactants. Add 3 lb/a of ammonium sulfate prior to adding Liberty 280 SL to the spray tank.

Crop stage: Apply between dawn and 2 hours before sunrise. Apply from emergence up to the V-7 stage or 24 inches tall.

Weed timing: Liberty 280 SL is a nonselective contact herbicide that controls many annual weeds and will burn the top growth of perennial weeds.

Remarks: Can be tank mixed with atrazine or most other post-emergence herbicides to enhance weed control or provide residual activity. A second application of Liberty can be made if needed but use drop nozzles after the V-7 stage but before corn exceeds 36 inches. Apply in a minimum of 15 gal/a for good spray coverage. Do not apply if wind speed exceeds 10 mph. Liberty is rainfast in 4 hours.

Lumax EZ

s-metolachlor + atrazine + mesotrione

PRE: 2.7 qt/a-3.25 qt/a; Apply 2.7 qt/a on soils with less than 3% organic matter, and 3.25 qt/a on soils with 3% organic matter or more.

Crop stage: Apply after planting but before grass weeds emerge.

Remarks: Lumax EZ can be applied before or after planting and should be tank mixed with glyphosate or Gramoxone to control emerged weeds.
It can be tank mixed with 2,4-D to enhance control of broadleaf weeds, but grass weeds would not be controlled with this mixture. Use the adjuvant recommended by the burndown herbicide. Lumax EZ is not recommended on soils with more than 10% organic matter. The amount of atrazine in Lumax EZ will not exceed atrazine rate limits. Additional atrazine or Princep can be tank mixed with Lumax EZ for added broadleaf weed control. Corn has good tolerance to preemergence applications of Lumax EZ. Although it contains a safener to protect corn, corn sprouting in cold, wet soil may occasionally leaf out underground. Lumax EZ drift will bleach the leaves of sensitive plants. Do not apply if wind speed exceeds 10 mph. Can be applied preemergence with water or liquid fertilizer (except suspension fertilizers) as the carrier. Lumax EZ may be applied to field, silage, seed, and sweet corn.

POST: 2.7 qt/a-3.25 qt/a; Apply 2.7 qt/a on soils with less than 3% organic matter, and 3.25 qt/a on soils with 3% organic matter or more.

Adjuvants: NIS, COC; Add nonionic surfactant or crop oil concentrate when making postemergence applications but do not add a nitrogen source. 3 inches tall should be controlled. Rate can be increased if the corn was treated with Counter 20G.

Crop stage: Can be applied to corn from emergence to 12 inches tall.

Remarks: Lumax EZ will not control emerged grasses unless tank mixed with Atrazine Q, Basis Blend, or Stedfast Q. Broadleaf weeds less than 3 inches tall should be controlled. Rate can be reduced to 2 qt/a when mixed with glyphosate or Liberty 280 SL. When tank mixing with Liberty 280 SL, use ammonium sulfate as the only adjuvant. If the glyphosate does not require surfactant, only add ammonium sulfate. Do not apply postemergence if the corn was treated with Counter 20G. Lumax EZ is not recommended on soils with more than 10% organic matter. The amount of atrazine in Lumax EZ will not exceed atrazine rate limits. Additional atrazine or Princep can be tank mixed for added broadleaf weed control. Lumax EZ applied postemergence after other organophosphate insecticides may cause injury. Lumax EZ drift will bleach the leaves of sensitive plants. Do not apply if wind speed exceeds 10 mph. Lumax EZ may be applied to field, silage, seed, and sweet corn.

Metribuzin

PPi: 2.5-3 oz/a; 2-4 oz/a when applied 9 days preplant to preemergence or 2.5-3 oz/a when applied 10-30 days preplant.

Remarks: Can be tank mixed with most residual corn herbicides to assist with the residual control of several annual broadleaf weeds. The amount of residual activity will depend on the rate and time of application. Metribuzin may be used on field corn, silage corn, and seed corn varieties that are known to be tolerant.

PRE: 2-5.3 oz/a; 2-4 oz/a when applied 9 days preplant to preemergence or 2-5.3 oz/a when applied 10-30 days preplant.

Crop stage: Can be tank mixed with glyphosate, Gramoxone, or 2,4-D LVE, to improve the burndown of many annual broadleaf weeds. Metribuzin will also provide limited early season residual control of broadleaf weeds.

Remarks: Can be tank mixed with most residual corn herbicides to assist with the residual control of several annual broadleaf weeds. The amount of residual activity will depend on the rate and time of application. Metribuzin may be used on field corn, silage corn, and seed corn varieties that are known to be tolerant.

POST: 2-3 oz/a; 2-3 oz/a of metribuzin 75DF or equivalent of other metribuzin formulations.

Adjuvants: NIS, N; Never use crop oil concentrate. Do not use adjuvants in 2,4-D or Buctril tank mixes. In tank mixtures with atrazine or dicamba, 1 qt of nonionic surfactant per 100 gal of spray mixture may be added. Surfactant or 28% nitrogen solution may be added to Basagran tank mixtures.

Crop stage: Metribuzin can be applied from emergence to tasseling, but timing is restricted by the tank-mix partner.

Weed timing: Maximum size of broadleaf weeds controlled depends on the tank-mix partner. See label for specifics.

Remarks: Labeled as a tank-mix partner for atrazine, dicamba, Basagran, Buctril, and 2,4-D to enhance broadleaf weed control. Metribuzin may cause some corn leaf burn, but the effects are generally temporary. Metribuzin may be applied to field corn and silage corn but not to sweet corn.

NorthStar

POST: 2.5-5 oz/a

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% to the spray solution or 2-4 lb/a ammonium sulfate may improve the control of some weeds.

Crop stage: Apply to 4- to 20-inch corn. Applications before 4 inches may cause injury and after the V-6 stage may cause pinched ears. Use drop nozzles for corn from 20-36 inches tall.

Remarks: Can be tank mixed with atrazine, dicamba, Halcyon GT, glyphosate, or Resource to improve broadleaf weed control. Corn occasionally may show temporary yellowing or leaning/brittleness (from the dicamba component) after application. Delay cultivation until normal growth occurs to prevent stalk breakage. Soybeans, tobacco, and most vegetables are extremely sensitive to the dicamba component in NorthStar, so avoid drift. To prevent residues from injuring other crops like soybeans, use an ammonia solution to clean the sprayer after use. Do not apply NorthStar if Counter 20G was applied in furrow. NorthStar applied after surface-banded or T-banded Counter 20G may cause injury. NorthStar applications after Dyfonate, Lorsban, and Thimet may also cause temporary injury. NorthStar can be used on IR corn hybrids regardless of insecticide use without increasing risk of injury, but IT corn hybrids should be treated as conventional hybrids. NorthStar can be used on field corn, silage corn, and seed corn.

Option

foramsulfuron + safener

POST: 1.5-1.75 oz/a

Adjuvants: MSO, N, AMS; Add methylated seed oil at 1.5 pt/a plus either 28% fertilizer at 1.5-2 qt/a or ammonium sulfate at 1.5-3 lb/a.

Crop stage: Apply from the 1-collar through the 6-collar (V-6) stage.

Weed timing: Weeds taller than recommended heights should be treated with 1.75 oz/a.

Remarks: Option is an ALS inhibitor like the Accent Q family of herbicides with a short residual activity. As a result, ALS-resistant grasses will likely be cross resistant. Can be tank mixed with atrazine, Callisto, dicamba, Hornet, NorthStar, Status, or Yukon to improve broadleaf weed control or with acetochlor, ZemaX, Lumax EZ, or Prowl H2O for residual activity. Corn is tolerant as it contains a safener to enhance herbicide metabolism, but stressed corn may be temporarily yellowed or stunted. Do not use if Counter 20G (in-furrow), Dyfonate, or Thimet was applied because of the risk of injury. May cause temporary injury if Lorsban or Counter 20G (T-band) was applied. Should not be applied within 7 days of the application of an organophosphate insecticide. Option can be applied to field corn, silage corn, and sweet corn. It is not recommended on seed corn.

Outlook

dimethenamid-P

PPI: 12-21 fl oz/a

Crop stage: Blend the herbicide into the top 1-2 inches of soil within the 14 days before planting.

Remarks: In dry seasons, preplant-incorporated treatment provides better annual weed control than preemergence treatment. Adjust the rate according to either soil cation exchange capacity or soil texture and organic matter content. Use 21 fl oz/a of Outlook on all soils with greater than 8% organic matter. Generally doesn’t injure corn.
However, Outlook-treated corn sprouting in cold, wet soil may occasionally leave out underground. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. It may be used on field corn, silage corn, sweet corn, and seed corn.

PRE: 13-21 fl oz/a

Crop stage: Apply after planting but before weeds emerge.

Remarks: If no-till, a split application where one-half of the herbicide is applied early and the remainder applied at planting provides better weed control. When corn will be planted in 7 days, make a single application either ahead of or at planting. If weeds are present at the time of treatment, include glyphosate, Gramoxone, or 2,4-D in the spray mixture for annual weed burndown. Adjust the rate according to either soil cation exchange capacity or soil texture and organic matter content. Use 21 fl oz/a of Outlook on all soils with greater than 8% organic matter. Generally doesn’t injure corn. However, Outlook-treated corn sprouting in cold, wet soil may occasionally leave out underground. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. It may be used on field corn, silage corn, sweet corn, and seed corn.

POST: 14-21 fl oz/a

Crop stage: Can be applied to corn up to 12 inches tall or as a lay-by application.

Weed timing: Will not control emerged weeds so a tank-mix partner is generally necessary for initial control with Outlook providing residual grass control. Include adjuvants according to requirements of the tank-mix partner.

Remarks: Labeled tank mixes include most postemergence grass and broadleaf herbicides, including glyphosate and Liberty 280 SL on resistant hybrids. Use water as a carrier when applying postemergence; liquid fertilizer is not recommended as a carrier because of the risk of crop injury. Adjust the rate according to either soil cation exchange capacity or soil texture and organic matter content. Use 21 fl oz/a on all soils with greater than 8% organic matter. Generally doesn’t injure corn. It may be used on field corn, silage corn, sweet corn, and seed corn.

Permit

halosulfuron

POST: 0.67-1.33 oz/a

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% or crop oil concentrate at 1% to the spray mixture. A 28% nitrogen solution may be added at 2-4 qt/a or ammonium sulfate at 2-4 lb/a if required by a tank-mix partner.

Crop stage: Apply from emergence to lay-by stage (about 36 inches tall).

Remarks: Can be tank mixed with atrazine, Buctril, dicamba, or 2,4-D to broaden the spectrum of broadleaf weed control. Tank mixes can also be made with Accent Q to control specific grasses. Corn has good tolerance to Permit. Permit can be applied to field corn, silage corn, and seed corn, but not sweet corn.

Princep 4L

simazine

PPI: 2 qt/a

Crop stage: Apply and incorporate within 14 days before planting.

Remarks: In dry seasons, preplant-incorporated applications provide better annual weed control than preemergence applications. Atrazine has largely replaced Princep 4L because of its greater water solubility, less rainfall is necessary to make it effective. Nonetheless if rainfall is adequate, Princep 4L will control annual weeds nearly equal to atrazine. Princep 4L can be used as an atrazine substitute in atrazine prohibition areas. Princep 4L can be tank mixed with acetochlor, atrazine, Dual II Magnum, or Outlook. The longer soil residual of Princep 4L may be of value in conservation tillage. Princep will not control triazine-resistant common lambsquarters, smooth pigweed, velvetleaf, or kochia. Can be mixed with liquid fertilizer for simultaneous application. Princep 4L may be used on field corn, silage corn, and sweet corn.

PRE: 2 qt/a

Crop stage: Apply before weeds and corn emerge. Where corn will be planted directly into a sod, cover crop, or previous crop residue, Princep 4L may be tank mixed with Gramoxone.

Remarks: See PPI remarks above.

Prowl H20

pendimethalin

PRE: 2-4 pt/a

Crop stage: Apply after planting but before corn and weeds emerge.

Remarks: Can be used on field corn or silage corn where emerged weeds will be controlled by a tank-mix partner. Apply only after corn planting and be certain that the seed furrow has been thoroughly closed and leveled before treatment. Plant corn at least 1.5 inches deep. Corn seed contact with Prowl H20 will cause stand loss. To improve broadleaf control, it is labeled for tank mixes with atrazine, Banvel, Hornet WDG, and Python. Prowl H20 is ineffective on peat and muck soils. Under cold, wet conditions, Prowl H20 may cause stunting and yellowing of seedling corn. It may also cause root pruning and occasional lodging. Do not soil-incorporate or corn injury will occur. If post-plant tillage is necessary to break a soil crust or to control weed escapes, use shallow tillage such as a rotary hoe or shallow row cultivation.

POST: 2-4 pt/a

Crop stage: Can be applied to corn up to 30 inches tall or until the V-8 stage.

Remarks: Will not control emerged weeds so a tank-mix partner is generally necessary for initial control. Prowl H20 will then provide residual grass control. It is labeled for tank mixes with atrazine, Banvel, Hornet WDG, and Python as well as glyphosate and Liberty 280 SL on resistant hybrids. Include adjuvants according to requirements of the tank-mix partner. To improve broadleaf control, use water as a carrier when applying postemergence treatments. Do not use liquid fertilizer as the carrier because severe crop injury may occur. Prowl H20 is ineffective on peat and muck soils. Under cold, wet conditions, Prowl H20 may cause stunting and yellowing of seedling corn. It may also cause root pruning and occasional lodging. Do not soil-incorporate or corn injury will occur. If post-plant tillage is necessary to break a soil crust or to control weed escapes, use shallow tillage such as a rotary hoe or shallow row cultivation.

Python

flumetsulam

PPI: 0.8-1.33 oz/a

Crop stage: Apply and incorporate into the top 2-3 inches of soil within 30 days before planting. The lower rates within each soil texture category need to be applied within 14 days of planting.

Remarks: Python can be tank mixed with other grass or broadleaf herbicides to expand the spectrum of weeds controlled. Do not use on peat or muck soils or on soils with pH less than 5.9 and organic matter above 5% because of reduced weed control. May cause stunting, which may be due to corn emerging in cold soils or other factors. To minimize the risk of injury, plant corn at least 1.5 inches deep and use on soils with at least 1.5% organic matter. Do not use if soil pH is greater than 7.8 and organic matter is less than 3% to avoid crop injury. Do not use if Countor 20G or Thimet have been applied. Apply other soil insecticides in a T-band or surface band to avoid crop injury when using this herbicide. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application.

The planter shoe may incorporate sufficient Prowl H20 into the seed furrow to damage corn. If post-plant tillage is necessary to break a soil crust or to control weed escapes, use shallow tillage such as a rotary hoe or shallow row cultivation. Preemergence-applied Prowl H20 can be mixed with liquid fertilizer for simultaneous application. Preemergence application may be made to field corn, silage corn, and processing varieties of sweet corn.

Appendix

Small grains

Corn weeds

Soybean

Fingres & Pastures

Small grains

Perennials weeds & insects

Stored grain management

Principles of pest management

41
Resicore acetochlor + mesotrione + cloyralid

PPI: 2.25-3.25 qt/a (Based on soil texture and organic matter, see label for details). On soils with less than 3% organic matter, use 2.25-2.75 qt/a. Apply 2.5-3.0 qt/a on soils with greater than 3% organic matter. User may use an additional 0.25 qt/a in areas of heavy weed infestation. Not recommended on soils with more than 10% organic matter.

Crop stage: Apply and incorporate into the upper 2 inches of the soil using a field cultivator, disc, or spring tooth harrow anywhere within 14 days prior to planting.

Remarks: Improper incorporation, excessive crop residues, or poor soil tilth may result in erratic, streaked, or otherwise unsatisfactory weed control.

PRE: See PPI.

Adjuvants: COC; If applied alone, add 0.25% nonionic surfactant plus either 2 lb/a of ammonium sulfate or 2 qt/a of 28% nitrogen solution. Surfactant is not required if tank mixing with glyphosate formulation that already contains all the necessary surfactant (fully loaded) or with Liberty 280 SL.

Crop stage: Apply from emergence to 20 inches tall, but before the V-7 stage.

Weed timing: Will control or suppress several small annual grass and broadleaf weeds and will provide limited residual control.

Remarks: Marketed to be mixed with glyphosate or Liberty 280 SL to increase their postemergence activity and provide residual activity. Rainfall or irrigation within several days after application is necessary to obtain residual activity of velvetleaf, pigweed, lambsquarters, and foxtails. May also be tank mixed with preemergence grass herbicides or reduced rates of Lumax EZ for greater residual activity or with Impact/Armezon plus atrazine for greater postemergence activity. Do not tank mix with Basagran because crop injury may occur. Do not use on fields treated with Counter 20G applied in furrow or over the row at cultivation. May injure corn treated with Counter 20G, Lorsban, or Thimet if soil has less than 4% organic matter. Resolve Q can be used on field corn, but not on seed or sweet corn.

POST: 1.25 oz/a

Adjuvants: NIS, N, AMS; If applied alone, add 0.25% nonionic surfactant plus either 2 lb/a of ammonium sulfate or 2 qt/a of 28% nitrogen solution. Surfactant is not required if tank mixing with glyphosate formulation that already contains all the necessary surfactant (fully loaded) or with Liberty 280 SL.

Crop stage: Apply from emergence to 20 inches tall, but before the V-7 stage.

Weed timing: Will control or suppress several small annual grass and broadleaf weeds and will provide limited residual control.

Remarks: Marketed to be mixed with glyphosate or Liberty 280 SL to increase their postemergence activity and provide residual activity. Rainfall or irrigation within several days after application is necessary to obtain residual activity of velvetleaf, pigweed, lambsquarters, and foxtails. May also be tank mixed with preemergence grass herbicides or reduced rates of Lumax EZ for greater residual activity or with Impact/Armezon plus atrazine for greater postemergence activity. Do not tank mix with Basagran because crop injury may occur. Do not use on fields treated with Counter 20G applied in furrow or over the row at cultivation. May injure corn treated with Counter 20G, Lorsban, or Thimet if soil has less than 4% organic matter. Resolve Q can be used on field corn, but not on seed or sweet corn.

Resource flumiclorac

POST: 4-8 fl oz/a; Rates are restricted based on application method with broadcast applications limited to 4-6 fl oz/a, drop-nozzle applications limited to 4-8 fl oz/a, and tank mixtures limited to 4 fl oz/a.

Adjuvants: COC; Add 1 pt/a of crop oil concentrate for broadcast application or 2 pt/a for drop nozzle applications. See label for tank mixture recommendations.
Crop stage: Apply from V-2 to V-10 (2- to 10-collar) stage. Tank mix applications can be made from V-2 through the maximum stage allowed by the tank-mix partner.

Remarks: May cause temporary spotting of corn leaves. Must be applied early for consistent control. Can be tank mixed at low rates with numerous broadleaf herbicides to enhance the velvetleaf control of the tank-mix partner. Resource may be used on field corn and silage corn but not on sweet corn.

Revinul Q nicosulfuron + mesotrione + safener

POST: 3.4-4.0 oz/a
Adjuvants: HSOC, COC, N, AMS; Add 1% crop oil concentrate plus or 0.5% HSOC plus 2 lbs/a of ammonium sulfate or UAN. MSO is not recommended because it may cause severe crop injury.

Crop stage: Apply to corn up to V-8 or 30 inches in field corn, V-6 or 18 inches in sweet corn, or V-5 or 20 inches in seed/popcorn. Avoid spraying into the whorl in later applications. Use drop nozzles from 12-18 inch tall sweet corn and 20-30 inch tall field or seed corn.

Weed timing: Works best when weeds are small.

Remarks: Best used in a two-pass program with a PRE herbicide application. Do not tank mix with Basagran. Do not mix with foliar-applied organophosphate insecticides such as Lorsban, malathion, or parathion, as severe crop injury may occur. Apply at least 7 days before Revulin Q or 3 days following. If Counter is applied in furrow, do not apply within 45 days of emergence.

Roundup PowerMAX glyphosate

PRE: 0.38-1.5 lb ae/a; Apply 0.38-0.56 lb ae/a for annuals and 0.75-1.5 lb ae/a for quackgrass (see labels for specific rate recommendations).

Adjuvants: AMS; Ammonium sulfate at 8.5-17 lb/100 gal of spray mixture is frequently recommended, especially when tank mixing glyphosate with residual herbicides.

Crop stage: Apply from emergence to the V-8 stage (8 collars) or 30 inches, whichever occurs first. Roundup Ready 2 corn hybrids can be sprayed with drop nozzles from 30-48 inches tall.

Weed timing: Glyphosate provides nonsclective control of annual grass and broadleaf weeds and will suppress or control perennial weeds.

Remarks: Unless following a preemergence herbicide, glyphosate applications will need to be made before the weed stages listed to prevent yield losses from early-season weed competition. Monsanto has recommended reduced rates of preemergence herbicides that should be applied at planting, which will lessen this concern. If applied early in the season, the glyphosate application may be before the optimum timing for control of perennial broadleaf weeds. Glyphosate does not have residual activity, but tank mixtures with acetochlor or atrazine are labeled to improve residual control. When applying glyphosate, be cautious to avoid drift and make sure the spray tank is cleaned before spraying a sensitive crop. Roundup Ready corn hybrids have good tolerance to glyphosate. Roundup Ready corn can be harvested for silage or grain after single or sequential applications of glyphosate.

Sharpen saflufenacil PPI: 1-3.5 fl oz/a; Rate depends on soil type (see label). Apply 1-2 fl oz/a for seed corn.

Crop stage: Apply up to 14 days prior to planting. Deep incorporation (>2 inches) may result in decreased weed control. Sharpen should not be preplant-applied for seed corn.

Weed timing: Will not control emerged grasses and will require a tank-mix partner. Early season broadleaf residual control will be obtained with Sharpen applied at the proper rate for the soil type (2-3 fl oz/a).

Remarks: A planned sequential herbicide application will be required for season-long broadleaf and grass weed control. Sharpen plus a residual grass herbicide should allow the postemergence application to be delayed without the risk of early season weed competition. Has good crop tolerance but may cause injury under stressful growing conditions; do not apply to emerged corn or severe injury will occur. May be used with Atezic, Fortress, or Force insecticides but cannot be used with Counter 20G or Lorsban insecticides or injury may result.

PRE: 1-3.5 fl oz/a; Rate depends on soil type (see label). Apply 1-2 fl oz/a for seed corn.

Crop stage: Apply after planting but prior to crop emergence. Severe crop injury will occur if applied after crop emergence.

Weed timing: Sharpen applied at 1 fl oz/a plus MSO at 1% plus AMS or UAN at 1 to 2.5% will effectively burn down most annual and perennial broadleaf weeds; however, the perennials will recover. Will not control emerged grasses and will require a tank-mix partner. Early season broadleaf residual control will be obtained when applied at the proper rate for the soil type (2-3 fl oz/a).

Remarks: See PPI remarks above.

Status dicamba + diflufenopryl + safener

POST: 5-10 oz/a; Can be tank mixed at 2.5 oz/a with glyphosate or Liberty 280 SL on resistant corn hybrids.

Adjuvants: NIS, COC, N, AMS; Add 0.25% nonionic surfactant or 1% crop oil concentrate. Also add either 28% nitrogen solution at 1.25% to the spray mixture or ammonium sulfate at 5 lb/100 gal of spray.

Crop stage: 4-36 inches tall or V-10

Weed timing: The label does not specify maximum weed sizes for treatment. However, broadleaf weeds should be treated before weed competition occurs and while weeds are still easily controlled (less than 4 inches in height). Status controls many annual broadleaf weeds and suppresses perennial broadleaves. Status may also suppress growth of annual grasses that escape control after a preemergence grass herbicide application but do not rely on Status for annual grass control.

Remarks: Can be tank mixed with other post-emergence grass or broadleaf herbicides with the following exceptions — dicamba, Hornet WDG, Northstar, and 2,4-D. Tank mixing with emulsifiable concentrate formulations of preemergence grass herbicides are not recommended because
of potential injury. Corn injury (stalk brittleness or twisting) should be less than injury from other dicamba products because of the safener added to the formulation. Soybeans, tobacco, and most vegetable are extremely sensitive to Status, so avoid drift. To prevent residues from injuring other crops like soybeans, the sprayer should be cleaned after use with a strong detergent or spray tank cleaner. Status can be used on field corn, silage corn, and seed corn but not on sweet corn.

Solstice
mesotrione + fluthiacet

POST: 2.5-3.15 fl oz/a
Adjuvants: COC 1% v/v + 2.5% v/v UAN or 8.5 lb AMS/100 gal. NIS at 0.25% v/v can be substituted for COC but may reduce weed control. MSO may cause severe crop injury. Do not use liquid fertilizer as a carrier. Do not add UAN or AMS for applications on yellow popcorn or sweet corn, and NIS is preferred over COC for these corn crops.

Crop stage: Spike to V-8 corn
Weed timing: Apply before broadleaf weeds exceed 5 inches in height.

Remarks: Provides selective contact and systemic activity for broadleaf weed control but should be tank-mixed with other herbicides for postemergence grass control. Can be used on field corn, seed corn, yellow popcorn, and sweet corn but do not use on white popcorn or ornamental (Indian) corn. Do not exceed 5.25 fl oz in a 12-month cropping year, and do not apply a second application to corn within 14 days of the first application. Broadleaf control is improved by tank mixtures with atrazine, but timing and rate restrictions of atrazine must be followed. Do not tank-mix with additional emulsifiable concentrate grass herbicides unless exceptions are followed on the label. Do not apply to corn treated with Counter, Lorsban, or any other organophosphate-containing soil insecticide. Do not tank-mix with any organophosphate or carbamate insecticides, and do not apply within 7 days prior or after a foliar organophosphate or carbamate insecticide application. Do not cultivate corn within 7 days of application, but cultivation 1-3 weeks after application may improve control.

Steadfast Q
nicosulfuron + rimsulfuron + safener

POST: 1.5 oz/a
Adjuvants: COC, NIS, N, AMS; Add crop oil concentrate at 1% (preferred) or nonionic surfactant at 0.25% to the spray solution. Also add 2 qt/a of 28% nitrogen solution or 2 lb/a ammonium sulfate.

Crop stage: Apply from emergence to 20 inches, but before the 7-collar (V-7) stage. For corn with 77-88-day maturities, apply before 12 inches or V-6 stage.

Remarks: Do not add a nitrogen fertilizer if tank mixing with Maxam EZ. Steadfast Q is labeled for tank mixtures with lower rates of atrazine, Callisto, dicamba, Horizon, Impact/Armazon plus atrazine, or Status to provide broadleaf weed control. Tank mixing Steadfast Q with dicamba may increase the risk of rat-tailing when applied to small corn. Do not tank mix Steadfast Q with Basagran, or 2,4-D because crop injury or antagonism may occur. Only tank mix with ALS herbicides when recommended by DuPont. Do not apply to hybrids with relative maturities of less than 77 days or injury may occur. Do not use Steadfast Q on fields treated with Counter 20G applied in furrow at planting or over the row at cultivation. Steadfast Q may injure corn treated with Counter 20G, Lorsban, or Thimet if soil has less than 4% organic matter. Do not apply organophosphate insecticides within 7 days before or 3 days after Steadfast Q applications. Steadfast Q may only be used on field and silage corn.

Stinger
clopyralid

POST: 0.25-0.5 pt/a
Crop stage: Apply from emergence through 24 inches tall.

Weed timing: Apply before annual broadleaf weeds exceed 5 leaves. Controls many weeds in the sunflower family including cocklebur, sunflower, common and giant ragweed, Jerusalem artichoke, and Canada thistle plus some weeds in the nightshade, buckwheat, and legume families.

Remarks: Stinger may be used on field corn and silage corn but not on sweet corn.

SureStart II
acethochlor + clopyralid + flumetsulam

PPI: 1.5-3.0 pt/a
Crop stage: Apply and incorporate into the top 2 inches of soil within 14 days before planting.

Remarks: This premix provides approximately half the rates of the ingredients in Surpass and Hornet at the 1.5 pt/a rate. A supplemental label allows rates above 2.0 pt/a for greater residual activity. Do not use on soils with a pH of less than 5.9 and organic matter above 5% because of reduced weed control. To minimize the risk of injury, plant corn at least 1.5 inches deep and use on soils with at least 1.5% organic matter and avoid soils with a pH above 7.8. Soil-applied organophosphate insecticides should be applied in a T-band or banded to avoid injury, and Counter 20G and Thimet should not be used. It may be used on field corn and seed corn but not on sweet corn.

Surpass NXT
acethochlor + safener

PPI: 1.5-3.4 pt/a
Crop stage: Apply and incorporate 1-2 inches deep within 14 days before planting.

Remarks: Provides good to excellent control of foxtails, crabgrass, and fall panicum but has no effect on quackgrass. It controls some small-seed-
ed broadleaf weeds but only suppresses velvetleaf. Can be tank mixed with atrazine, dicamba, HorNet, Princep, or Python for improved broadleaf weed control. When preplant-incorporated, a minimum of 2.5 pt/a is required to provide reasonable yellow nutsedge suppression on medium- and fine-textured soils. All acetochlor formulations contain a safener to protect corn from herbicide injury. However, acetochlor-treated corn sprouting in cold, wet soils may occasionally leaf out underground. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous application. It may be used on field corn, seed corn, and sweet corn.

TripleFlex II
- **aceto[...](rest of the text is not visible)**

Valor SX
- **flumioxazin**
- **PRE:** 1-3 oz/a
- **Crop stage:** Apply 7-30 days before planting, depending on rate, residue cover, and rainfall.
- **Weed timing:** Can be tank mixed with glyphosate, Gramoxone, 2,4-D, or other burndown herbicides to control emergence of annual broadleaf weeds. Valor SX will provide residual control of broadleaf weeds depending on rate. At a 1 oz/a rate with glyphosate, more rapid control may be observed plus limited residual suppression of annual broadleaf weeds, but this application must be made at least 2 weeks before planting. At rates of 2-3 oz/a, residual annual broadleaf weed control should extend past corn planting.

Remarks: Can only be used in no-till fields where residue has not been incorporated. Should be tank mixed with acetochlor, Dual, Outlook, or products containing these ingredients because of potential injury. Do not irrigate corn from emergence until after the V-2 stage. Valor SX can be used on field and silage corn but not on seed or sweet corn.

Vida
- **pyraflufen**
- **Burndown rate:** 0.5-2.0 fl oz/a
- **PRE:** 0.5-2.0 fl oz/a
- **Adjuvants:** NIS, COC; Add 0.5% nonionic surfactant or 1% crop oil concentrate.

Weed timing: Apply to emerged broadleaf weeds before they exceed 4 inches in height or 3 inches in rosette diameter and prior to corn planting.

Remarks: Is a contact herbicide that will control many emerged annual broadleaf weeds. Only the top growth of perennials will be controlled. Can be tank mixed with glyphosate for grass control or added control of larger broadleaf weeds. Can also be mixed with 2,4-D or other residual herbicides. Good spray coverage is necessary for good weed control.

Verdict
- **saflufenacil + dimethenamid-P**
- **PPi:** 10-18 fl oz/a; Rate depends on soil type (see label).
- **Crop stage:** Apply up to 14 days prior to planting. Deep incorporation (greater than 2 inches) may result in decreased weed control. Should not be preplant-incorporated for seed corn.

Weed timing: Will not control emerged grasses and will require a tank-mix partner. Early season broadleaf residual control will be obtained with Sharpen applied at the proper rate for the soil type (2-3 fl oz/a).

Remarks: Has both burndown and residual activity and if applied should give acceptable early season control of most annual grasses and broadleaf weeds. It will not control perennials. A planned sequential herbicide application will be required for season-long broadleaf and grass weed control. Do not apply to emerged corn or severe injury will occur. Cannot be used with Counter 20G or Lorbard insecticides, or injury may result. Do not use on sands with less than 3% organic matter.

PRE: 10-18 fl oz/a; Rate depends on soil type (see label). Apply 1-2 fl oz/a for seed corn.

Adjuvants: MSO, AMS, N; If weeds are emerged use 1% methylated seed oil plus ammonium sulfate or another nitrogen source at 1 to 2.5% for maximum burndown. Decreased activity will be observed if NIS is substituted.

Crop stage: Apply after planting but prior to crop emergence. Severe crop injury will occur if applied after crop emergence.

Remarks: See PPI remarks above.

Yukon
- **halosulfuron + dicamba**
- **POST:** 4-8 oz/a
- **Adjuvants:** NIS, COC, N, AMS; Add nonionic surfactant at 0.25-0.5% (preferred) or crop oil concentrate at 1% to the spray solution. If required by a tank-mix partner, 2-4 qt/a of 28% nitrogen solution or 2.4 lb/a ammonium sulfate may be added.

Crop stage: Apply from emergence to 36 inches.

Remarks: Yukon at 4 oz/a is equivalent to the standard 0.67 oz/a rate of Permit plus 4 oz/a of dicamba. Yukon is labeled for tank mixtures with atrazine, Accent, Gallisto, Impact/Armezon, and Steadfast Q. It can be tank mixed with glyphosate or Liberty 280 SL on resistant hybrids. Corn has good tolerance to early postemergence applications, but certain hybrids may have temporary twisting or brittleness because of the dicamba component. Soybeans, tobacco, and most vegetables are extremely sensitive to the dicamba component in Yukon, so avoid drift. To prevent residues from injuring other crops like soybeans, clean the sprayer after use with a detergent solution followed by an ammonia solution. Yukon can be used on field, silage, and seed corn but not on sweet corn.

Zemax
- **s-metolachlor + mesotrione**
- **PRE:** 2-2.4 qt/a; Apply 2 qt/a on soils with less than 3% organic matter, and 2.4 qt/a on soils...
with 3% organic matter or more.

Crop stage: Apply after planting but before grass weed emergence.

Weed timing: Can be applied before or after no-till planting and should be tank mixed with glyphosate or Gramoxone to control emerged weeds. It can also be tank mixed with 2,4-D to enhance control of broadleaf weeds like dandelion, but grass weeds would not be controlled with this mixture. Use the adjuvant recommended by the burndown herbicide. Atrazine or Prinectin can be tank mixed with Zemax for added broadleaf weed control.

Remarks: Corn has good tolerance to preemergence applications. Although it contains a safener to protect corn, corn sprouting in cold, wet soil may occasionally leaf out underground. Drift will bleach the leaves of sensitive plants. Do not apply Zemax if wind speed exceeds 10 mph. Can be applied preemergence with water or liquid fertilizer (except suspension fertilizers) as the carrier. Zemax can be applied to field, silage, seed, and sweet corn.

POST: 2-2.4 qt/a; Apply 2 qt/a on soils with less than 3% organic matter, and 2.4 qt/a on soils with 3% organic matter or more.

Adjuvants: NIS, COC; Add nonionic surfactant (preferred) or crop oil concentrate when making postemergence applications, but do not add a nitrogen source.

Crop stage: Can be applied to corn from emergence to 30 inches tall or the 8-collar (V-8) stage.

Weed timing: Will not control emerged grasses unless tank mixed with Accent Q, Basis Blend, or Steadfast Q (drop nozzles should be used if corn is taller than 12 inches). Broadleaf weeds less than 3 inches tall should be controlled. The rate can be reduced to 1.6 qt/a when mixed with glyphosate or Liberty 280 SL. When tank mixing with Liberty 280 SL, use ammonium sulfate as the only adjuvant. When tank mixing with glyphosate, add a surfactant and ammonium sulfate if the glyphosate formulation requires surfactant. If the glyphosate does not require surfactant, only add ammonium sulfate. Do not apply postemergence corn treated with Counter 20G. Atrazine or Prinectin can be tank mixed with Zemax for added broadleaf weed control.

Remarks: See PPI remarks above.

Zidua

pyroxasulfate

PPI: 1.5-4.0 oz/a; Apply 1.5-2.75 oz/a for coarse soils, 2.0-3.0 oz/a for medium soils, and 2.5-4.0 oz/a for fine soils.

Crop stage: Make sure the tillage is uniform and no deeper than 2 inches. Incorporation can occur in the spring up to 14 days prior to planting.

Weed timing: Does not provide postemergence weed control.

Remarks: Can be applied with water or various fertilizer combinations; see label for fertilizer use details. Can be mixed with one or more herbicide products according to both the Zidua and tank-mix partner labels. Does not require any spray additives; however, spray adjuvants may be needed with tank-mix partners and should be added accordingly. You can make sequential applications in one season if the first application is in the previous fall, but do not make more than one application to corn in the spring, and do not apply more than 2.75 oz/a/season on coarse soils or more than 5.0 oz/a/season on other soils. Certain seed corn, popcorn, and sweet corn genetics may be more sensitive to Zidua than others, so check with your seed supplier for additional information. Do not harvest sweet corn ears for human consumption less than 37 days after application.

PRE: 1.5-4.0 oz/a; Apply 1.5-2.75 oz/a for coarse soils, 2.0-3.0 oz/a for medium soils, and 2.5-4.0 oz/a for fine soils.

Crop stage: Zidua may be applied preemergence. Soil can be cultivated before or after application, but if soil is tilled after application, make sure the tillage is uniform and no deeper than 2 inches.

Weed timing: Does not provide postemergence weed control.

Remarks: See PPI remarks above.

POST: 1.5-4.0 oz/a; Apply 1.5-2.75 oz/a for coarse soils, 2.0-3.0 oz/a for medium soils, and 2.5-4.0 oz/a for fine soils.

Crop stage: Zidua may be applied early postemergence application up to the V-4 growth stage.

Weed timing: Does not provide postemergence weed control.

Remarks: See PPI remarks above.
Table 2-4. Forage, grazing, and grain harvest intervals for corn herbicides

<table>
<thead>
<tr>
<th>Product</th>
<th>Forage/grazing interval (days)</th>
<th>Grain harvest interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D Amine 4, Shredder</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2,4-D LV4, Shredder</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>AAtrax 4L</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>AAtrax 90DF</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Accent Q</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Acuron</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Acuron Flexi</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Anthem</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Autumn</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Autumn Super 51 WDG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Basagran</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Buctril 2EC</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Buctril 4EC</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Bullet</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>Cadet</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Callisto</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Capreno</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Clarity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corvis</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Degree XTRA</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Diflexx</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Fierce</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Halex GT</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Harness</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harness XTRA</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Harness XTRA 5.6L</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>Impact</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Instigate</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Lariat</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Laudis</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>NorthStar</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Option</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>Outlook</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Permit</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Princep 4L</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Python</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Realm Q</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>Rescore</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Resource</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Revulin Q</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Sharpen</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Solstice</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>Status</td>
<td>72</td>
<td>32</td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Stinger</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>SureStart II</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>Surpass NXT</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>Valor SX</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vida</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Yukon</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Zidua</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*a Labels may have changed after this table was prepared. Consult current labels to verify the information.

*b Do not harvest or feed sweet corn forage or ears for 40 days or fodder for any type of corn for 70 days after the last application.

*c Can harvest grain if applied before tassel emergence.

*d Delay harvest of forage until milk stage.

*e Corn silage has a 45-day harvest interval.
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate/a</th>
<th>Provides the equivalent of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthem</td>
<td>10 fl oz</td>
<td>3.07 oz Zidua 85WDG + 0.69 fl oz Cadet 0.91EC</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>5 fl oz</td>
<td>10 fl oz Anthem</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>32 fl oz</td>
<td>2.45 fl oz Zidua + 32 fl oz Aatrex 4L + 0.55 fl oz Cadet</td>
</tr>
<tr>
<td>Basis Blend 30DF</td>
<td>0.825 oz</td>
<td>0.66 oz Resolve 25DF + 0.17 oz Harmony SG</td>
</tr>
<tr>
<td>Breakfree ATZ</td>
<td>2 qt</td>
<td>2.5 pt Surpass 6.4EC + 1.5 lb atrazine 90DF</td>
</tr>
<tr>
<td>Breakfree ATZ Lite</td>
<td>2 qt</td>
<td>2.5 pt Surpass 6.4EC + 0.83 lb atrazine 90DF</td>
</tr>
<tr>
<td>Bicep II Magnum 5.5L</td>
<td>1.9 qt</td>
<td>1.2 pt Dual II MAGNUM 7.64EC + 1.6 lb atrazine 90DF</td>
</tr>
<tr>
<td>Bicep Lite II Magnum 6L</td>
<td>1.5 qt</td>
<td>1.3 pt Dual II MAGNUM 7.64EC + 1.1 lb atrazine 90DF</td>
</tr>
<tr>
<td>Bullet 4ME</td>
<td>3 qt</td>
<td>3.75 pt Micro-Tech 4ME + 1.25 lb atrazine 90DF</td>
</tr>
<tr>
<td>Callisto GT 4.18L</td>
<td>2 pt</td>
<td>3 fl oz Callisto 4L + 0.95 lb ae glyphosate</td>
</tr>
<tr>
<td>Callisto Xtra 3.7CS</td>
<td>24 fl oz</td>
<td>3 fl oz Callisto 4L + 0.62 lb atrazine 90DF</td>
</tr>
<tr>
<td>Capreno 3.45L</td>
<td>3 fl oz</td>
<td>2.47 fl oz Laudis 3.5L + 0.013 lb thiencarbazone</td>
</tr>
<tr>
<td>Cinch ATZ</td>
<td>4.2 pt</td>
<td>1.3 pt Dual II MAGNUM 7.64EC + 1.8 lb atrazine 90DF</td>
</tr>
<tr>
<td>Cinch ATZ Lite</td>
<td>3 pt</td>
<td>1.3 pt Dual II MAGNUM 7.64EC + 1.1 lb atrazine 90DF</td>
</tr>
<tr>
<td>Corvus</td>
<td>3.3 fl oz</td>
<td>3.13 fl oz of Balance Flexx + 0.32 oz ai thiencarbazone</td>
</tr>
<tr>
<td>Degree XTRA 4.04CS</td>
<td>3.7 qt</td>
<td>2.85 pt Harness 7EC + 1.38 lb atrazine 90DF</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>25 fl oz</td>
<td>8.4 fl oz Diflexx + 8.4 fl oz Laudis</td>
</tr>
<tr>
<td>Enlist Duo</td>
<td>4.75 pt</td>
<td>0.95 lb ae 2,4-D + 1.01 lb ae glyphosate</td>
</tr>
<tr>
<td>Fierce WDG</td>
<td>3 oz</td>
<td>2 oz Valor SX 51DF + 1.5 oz Zidua 85WG</td>
</tr>
<tr>
<td>FullTime NXT</td>
<td>3.7 qt</td>
<td>2.85 pt Harness 7EC + 1.38 lb atrazine 90DF</td>
</tr>
<tr>
<td>G-Max Lite 5L</td>
<td>3 pt</td>
<td>18 fl oz Outlook 6EC + 1.1 lb atrazine 90DF</td>
</tr>
<tr>
<td>Guardsman Max 5L</td>
<td>3.6 pt</td>
<td>16 fl oz Outlook 6EC + 1.67 lb atrazine 90DF</td>
</tr>
<tr>
<td>Halex GT</td>
<td>3.6 pt</td>
<td>1 pt Dual MAGNUM 7.64EC + 3 fl oz Callisto 4L + 0.9 lb ae glyphosate</td>
</tr>
<tr>
<td>Harness XTRA 5.6L</td>
<td>2.3 qt</td>
<td>2 pt Harness 7.0EC + 1.6 lb atrazine 90DF</td>
</tr>
<tr>
<td>Harness XTRA 6L</td>
<td>2 qt</td>
<td>2.46 pt Harness 7.0EC + 0.94 lb atrazine 90DF</td>
</tr>
<tr>
<td>Hornet 68.5WDG</td>
<td>4 oz</td>
<td>0.92 oz Python 80WG + 5.3 oz Stinger 3SC</td>
</tr>
<tr>
<td>Instigate 45.84WDG</td>
<td>6 oz</td>
<td>1 oz Resolve 25DF + 5 fl oz Callisto 4SC</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>2 qt</td>
<td>2.7 pt Surpass 6.4EC + 0.94 lb atrazine 90DF</td>
</tr>
<tr>
<td>Keystone NXT 5.4L</td>
<td>2.6 qt</td>
<td>2.5 pt Surpass 6.4EC + 1.8 lb atrazine 90DF</td>
</tr>
<tr>
<td>Lumax EZ 3.95L</td>
<td>3.25 qt</td>
<td>2.1 pt Dual II MAGNUM 7.64EC + 6.4 fl oz Callisto 4L + 0.83 lb atrazine 90DF</td>
</tr>
<tr>
<td>NorthStar 47.4WG</td>
<td>5 oz</td>
<td>0.5 oz Beacon 75WG + 4 oz Clarity 45C</td>
</tr>
<tr>
<td>Realm Q</td>
<td>4 oz</td>
<td>1.2 oz Resolve 25 WDG + 2.5 fl oz Callisto 4L</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>1.25 oz</td>
<td>0.9 oz Resolve 25WDG + 0.1 oz Harmony SG</td>
</tr>
<tr>
<td>Solstice 4L</td>
<td>3 fl oz</td>
<td>0.71 fl oz Cadet + 2.84 oz Callisto 4L</td>
</tr>
<tr>
<td>Status</td>
<td>5 oz</td>
<td>0.8 oz ae diflufenzopyr + 4 fl oz Clarity 4S</td>
</tr>
<tr>
<td>Steadfast Q 37.7WDG</td>
<td>1.5 oz</td>
<td>0.67 oz Accent Q 54.5WDG + 0.75 oz Resolve 25DF</td>
</tr>
<tr>
<td>SureStart II</td>
<td>1.5 pt</td>
<td>0.88 pt Surpass 6.4EC + 2.3 fl oz Stinger 35C + 0.45 oz Python 80WG</td>
</tr>
<tr>
<td>Verdict 5.57EC</td>
<td>13 fl oz</td>
<td>2.6 fl oz Sharpen 2.86SC + 10.8 fl oz Outlook 6EC</td>
</tr>
<tr>
<td>Yukon 67.5WDG</td>
<td>4 oz</td>
<td>0.67 oz Permit 75WDG + 4 oz Clarity 4S</td>
</tr>
<tr>
<td>Zemax 3.67L</td>
<td>2.4 qt</td>
<td>2.1 pt Dual II MAGNUM 7.64EC + 6.3 oz Callisto 4L</td>
</tr>
</tbody>
</table>
Table 2-6. Rainfree period and adjuvants required for postemergence corn herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Hours rainfast</th>
<th>NIS</th>
<th>Crop oil concentrate</th>
<th>Nitrogen additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D Amine, Shredder</td>
<td>6–8</td>
<td></td>
<td>1 qt/a</td>
<td></td>
</tr>
<tr>
<td>2,4-D LV4, Shredder</td>
<td>1</td>
<td></td>
<td>1 qt/a</td>
<td></td>
</tr>
<tr>
<td>AATrux 4L</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>AATrux 90DF</td>
<td>4</td>
<td>0.25%</td>
<td>or 1–2 pt</td>
<td>plus 28% N at 1–2 qt/a or AMS at 2–3 lb/a</td>
</tr>
<tr>
<td>Accent Q</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
</tr>
<tr>
<td>Anthem</td>
<td>6–8</td>
<td>1 qt/a</td>
<td>or 28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>6–8</td>
<td>1 qt/a</td>
<td>or 28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
<td></td>
</tr>
<tr>
<td>Basagran⁺</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Buctril 2EC</td>
<td>1</td>
<td></td>
<td>Add as directed by tank-mix partner.</td>
<td></td>
</tr>
<tr>
<td>Buctril 4EC</td>
<td>1</td>
<td></td>
<td>Add as directed by tank-mix partner.</td>
<td></td>
</tr>
<tr>
<td>Cadet</td>
<td>4</td>
<td>0.25%</td>
<td>or 1–2 pt/a</td>
<td>plus 28% N at 1–2 qt/a or AMS at 1–2 lb/a</td>
</tr>
<tr>
<td>Callisto</td>
<td>1</td>
<td>1%</td>
<td></td>
<td>plus 28% N at 2.5% or AMS at 8.5 lb/100 gal</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>—</td>
<td>0.25–0.5%</td>
<td>or 1%</td>
<td>plus AMS at 8.5–17 lb/100 gal</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>—</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% UAN at 2.5% or AMS at 8.5 lb/100 gal</td>
</tr>
<tr>
<td>Capreno</td>
<td>1</td>
<td>1%</td>
<td></td>
<td>plus 28% N at 1.5 qt/a or AMS at 1.5 lb/a</td>
</tr>
<tr>
<td>Dicamba</td>
<td>4</td>
<td>28% N at 2–4 qt/a or AMS at 2.5 lb/a may be added for velvetleaf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difflex</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2–4 qt/a or AMS at 2.5–2.5 lbs/a</td>
</tr>
<tr>
<td>Difflex Duo</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 1.5 qt/a or AMS at 8.5–17 lb/100 gal</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>2–6</td>
<td></td>
<td>Check label to see if surfactant is needed.</td>
<td>Add AMS at 8.5–17 lb/100 gal</td>
</tr>
<tr>
<td>Halex GT</td>
<td>—</td>
<td>0.25–0.5%</td>
<td>or 1%</td>
<td>plus AMS at 8.5–17 lb/100 gal</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2–4 qt/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>2</td>
<td>0.25%</td>
<td>or 1%</td>
<td>Add 28% N at 2.5% if droughty</td>
</tr>
<tr>
<td>Impact</td>
<td>1</td>
<td></td>
<td>1.0–1.5% (MSO preferred)</td>
<td>plus 28% N at 1.25–2.5% or AMS at 8.5–17 lb/100 gal</td>
</tr>
<tr>
<td>Instigate</td>
<td>1</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Laudis</td>
<td>1</td>
<td>1% (MSO preferred)</td>
<td>plus 28% N at 1.5 qt/a or AMS at 8.5 lb/100 gal</td>
<td></td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>4</td>
<td></td>
<td></td>
<td>Add AMS at 3 lb/a</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 0.5–1 gal/a or AMS at 17 lb/100 gal</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>4</td>
<td>0.25%</td>
<td>or 1–4 pt/a if com < 12°</td>
<td>28% N at 2–4 qt/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>NorthStar</td>
<td>2</td>
<td>Add 1.5 pt/a MSO</td>
<td>plus 28% N at 1.5–2.0 qt/a or AMS at 1.5–3.0 lb/a</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>4</td>
<td>0.25–0.5%</td>
<td>or 1%</td>
<td>28% N at 2–4 qt/a or AMS at 2–4 lb/a may be added if required by tank-mix partner</td>
</tr>
<tr>
<td>Permit</td>
<td>4</td>
<td>0.25–0.5%</td>
<td>or 1%</td>
<td>28% N at 2–4 qt/a or AMS at 2–4 lb/a may be added if required by tank-mix partner</td>
</tr>
<tr>
<td>Realm Q</td>
<td>—</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Resource</td>
<td>1</td>
<td>1 pt/a⁺</td>
<td>AMS at 8.5 to 17 lb/100 gal</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>0.5</td>
<td></td>
<td></td>
<td>AMS at 8.5 to 17 lb/100 gal</td>
</tr>
<tr>
<td>Solstice</td>
<td>1</td>
<td>1%</td>
<td></td>
<td>plus 28% N at 2.5% or AMS at 8.5 lb/100 gal</td>
</tr>
<tr>
<td>Status</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 1.25% or AMS at 5–17 lb/100 gal</td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>4</td>
<td>0.25%</td>
<td>or 1%</td>
<td>plus 28% N at 2 qt/a or AMS at 2 lb/a</td>
</tr>
<tr>
<td>Stinger</td>
<td>6–8</td>
<td></td>
<td>Adjuvants not required.</td>
<td></td>
</tr>
<tr>
<td>Yukon</td>
<td>4</td>
<td>0.25–0.5%</td>
<td>or 1%</td>
<td>28% N at 2–4 qt/a or AMS at 2–4 lb/a may be added if required by tank-mix partner</td>
</tr>
<tr>
<td>Zemax</td>
<td>0.25%</td>
<td>or 1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AMS = ammonium sulfate; COC = crop oil concentrate; MSO = methylated seed oil; N = nitrogen; UAN = urea-ammonium nitrate.

⁺Add COC for lambsquarters and common ragweed control, a nitrogen additive for velvetleaf control, or both if all three weeds are present.

⁺⁺Use 2 pt/a for drop-nozzle applications.
<table>
<thead>
<tr>
<th>Herbicide*</th>
<th>Corn stage</th>
<th>Rate/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D<sup>a</sup></td>
<td>4-8"</td>
<td>1 pt</td>
</tr>
<tr>
<td>Accent Q<sup>b</sup></td>
<td>0-20" or V-6</td>
<td>0.9 oz</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>0-11"</td>
<td>variable</td>
</tr>
<tr>
<td>Atrazine 4L</td>
<td>0-12"</td>
<td>1 qt</td>
</tr>
<tr>
<td>Basagran</td>
<td>NR</td>
<td>2 pt</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>0 to V-2</td>
<td>0.825 oz</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>0-5"</td>
<td>variable</td>
</tr>
<tr>
<td>Buctril</td>
<td>4 if-BT</td>
<td>1.5 pt</td>
</tr>
<tr>
<td>Cadet</td>
<td>V-2 to 48"</td>
<td>0.9 fl oz</td>
</tr>
<tr>
<td>Callisto</td>
<td>0-30" or V-8</td>
<td>3 fl oz</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>0-30" or V-8</td>
<td>2 pt</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>0-12"</td>
<td>24 fl oz</td>
</tr>
<tr>
<td>Capreno</td>
<td>V-1 to V-6</td>
<td>3 fl oz</td>
</tr>
<tr>
<td>Dicamba<sup>a</sup></td>
<td>0-8" or 5-if</td>
<td>1 pt</td>
</tr>
<tr>
<td>Difflexx</td>
<td>VE to V-10</td>
<td>10 fl oz</td>
</tr>
<tr>
<td>Difflexx Duo</td>
<td>VE to V-10</td>
<td>28 ft oz</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>0-40"</td>
<td>variable</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>0-30" or V-8</td>
<td>0.75 lb ae</td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>0-12"</td>
<td>variable</td>
</tr>
<tr>
<td>Halex GT</td>
<td>0-30" or V-8</td>
<td>3.6 pt</td>
</tr>
<tr>
<td>Harmony SV</td>
<td>V-1 to V-5 or 16"</td>
<td>0.083 oz</td>
</tr>
<tr>
<td>Liberty 280 SL<sup>a</sup></td>
<td>0-24" or V-7</td>
<td>22 fl oz</td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>0-12"</td>
<td>3 qt</td>
</tr>
<tr>
<td>NorthStar<sup>a</sup></td>
<td>4-20" (V-2 to V-6)</td>
<td>5 oz</td>
</tr>
<tr>
<td>Option<sup>a</sup></td>
<td>V-1 to V-6</td>
<td>1.5 oz</td>
</tr>
<tr>
<td>Outlook</td>
<td>0 to 12"</td>
<td>variable</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>0 to 30" or V-8</td>
<td>0.75 lb ae</td>
</tr>
<tr>
<td>Permit</td>
<td>0-36"</td>
<td>0.67 oz</td>
</tr>
<tr>
<td>Realm Q</td>
<td>0-20" or V7</td>
<td>4 oz</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>0-20" or V6</td>
<td>1.25 oz</td>
</tr>
<tr>
<td>Resource</td>
<td>V-2 to V-10</td>
<td>6 ft oz</td>
</tr>
<tr>
<td>Solstice</td>
<td>spike to V-8</td>
<td>variable</td>
</tr>
<tr>
<td>Status<sup>a</sup></td>
<td>4-36" or V-10</td>
<td>5 oz</td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>V-4</td>
<td>2.5 oz</td>
</tr>
</tbody>
</table>

Table 2-7. Application timings for postemergence herbicides

(Labeled rates for certain herbicides may be higher or lower than the rate included in this table. At different rates, the maximum weed size labeled for control may change.)

<table>
<thead>
<tr>
<th>Herbicide<sup>a</sup></th>
<th>Corn stage</th>
<th>Rate/a</th>
<th>Broadleaves</th>
<th>Grasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D<sup>a</sup></td>
<td>4-8"</td>
<td>1 pt</td>
<td>4 4 4 4 4 4 2</td>
<td>4 4 4 4 4 4 4</td>
</tr>
<tr>
<td>Accent Q<sup>b</sup></td>
<td>0-20" or V-6</td>
<td>0.9 oz</td>
<td>— — — — 4 4 4 —</td>
<td>4 4 4 4 4 4 4</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>0-11"</td>
<td>variable</td>
<td>Acetochlor does not control emerged weeds.</td>
<td></td>
</tr>
<tr>
<td>Atrazine 4L</td>
<td>0-12"</td>
<td>1 qt</td>
<td>4 4 4 4 4 4 4 4 —</td>
<td>1.5 1.5 —</td>
</tr>
<tr>
<td>Basagran</td>
<td>NR</td>
<td>2 pt</td>
<td>10 2 — — 3 6 10 5</td>
<td>— — —</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>0 to V-2</td>
<td>0.825 oz</td>
<td>— 3 — — 3 3 2 2 2 2</td>
<td>0.5 —</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>0-5"</td>
<td>variable</td>
<td>2 If 2 If — 2 If 2 If — 2 If 2 If 2 If 2 If —</td>
<td></td>
</tr>
<tr>
<td>Buctril</td>
<td>4 If-BT</td>
<td>1.5 pt</td>
<td>10 8 2 6 6 6 5</td>
<td>— — —</td>
</tr>
<tr>
<td>Cadet</td>
<td>V-2 to 48"</td>
<td>0.9 fl oz</td>
<td>— 2 — 4 — — 36</td>
<td>— — —</td>
</tr>
<tr>
<td>Callisto</td>
<td>0-30" or V-8</td>
<td>3 fl oz</td>
<td>5 5 5 5 — 5 5</td>
<td>— — —</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>0-30" or V-8</td>
<td>2 pt</td>
<td>4 4 4 4 4 4 4 4 4 4 4 4 4</td>
<td></td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>0-12"</td>
<td>24 fl oz</td>
<td>5 5 5 5 5 5 5 5 2 2 2 2 — 2 2</td>
<td></td>
</tr>
<tr>
<td>Capreno</td>
<td>V-1 to V-6</td>
<td>3 fl oz</td>
<td>6 6 6 6 6 6 6 5 5 5 3 2 3 3 6 3</td>
<td></td>
</tr>
<tr>
<td>Dicamba<sup>a</sup></td>
<td>0-8" or 5-if</td>
<td>1 pt</td>
<td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td>
<td></td>
</tr>
<tr>
<td>Difflexx</td>
<td>VE to V-10</td>
<td>10 fl oz</td>
<td>6 6 6 6 6 6 6 6</td>
<td>— — —</td>
</tr>
<tr>
<td>Difflexx Duo</td>
<td>VE to V-10</td>
<td>28 ft oz</td>
<td>6 6 6 6 6 6 6 6 5 — 2 3 3 4 3</td>
<td></td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>0-40"</td>
<td>variable</td>
<td>Dual II Magnum does not control emerged weeds.</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>0-30" or V-8</td>
<td>0.75 lb ae</td>
<td>24 12 6 18 12 12 6 6 6 12 12 12 12 12 12 12</td>
<td></td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>0-12"</td>
<td>variable</td>
<td>1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 —</td>
<td></td>
</tr>
<tr>
<td>Halex GT</td>
<td>0-30" or V-8</td>
<td>3.6 pt</td>
<td>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td>
<td></td>
</tr>
<tr>
<td>Harmony SV</td>
<td>V-1 to V-5 or 16"</td>
<td>0.083 oz</td>
<td>— 4 — 12 — — 6 6 —</td>
<td>— — —</td>
</tr>
<tr>
<td>Liberty 280 SL<sup>a</sup></td>
<td>0-24" or V-7</td>
<td>22 fl oz</td>
<td>6 4 6 3 6 6 6 3 3 3 6 3 3 6 6</td>
<td></td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>0-12"</td>
<td>3 qt</td>
<td>3 3 3 3 3 3 3 3 — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>NorthStar<sup>a</sup></td>
<td>4-20" (V-2 to V-6)</td>
<td>5 oz</td>
<td>6 4 6 5 9 9 4 4 — 3 — — — — —</td>
<td></td>
</tr>
<tr>
<td>Option<sup>a</sup></td>
<td>V-1 to V-6</td>
<td>1.5 oz</td>
<td>2 2 4 3 2 — — 2 4 3 6 3 3 2 3 3 2 3 2</td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>0 to 12"</td>
<td>variable</td>
<td>Outlook does not control emerged weeds.</td>
<td></td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>0 to 30" or V-8</td>
<td>variable</td>
<td>Prowl H2O does not control emerged weeds.</td>
<td></td>
</tr>
<tr>
<td>Permit</td>
<td>0-36"</td>
<td>0.67 oz</td>
<td>9 — — 3 9 3 2 9 — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Realm Q</td>
<td>0-20" or V7</td>
<td>4 oz</td>
<td>5 5 5 5 5 5 5 5 2 2 2 2 2 5 5 — 1</td>
<td></td>
</tr>
<tr>
<td>Resolve Q</td>
<td>0-20" or V6</td>
<td>1.25 oz</td>
<td>— — — — 3 — — 3 2 2 2 2 2 2 0.5 — 1</td>
<td></td>
</tr>
<tr>
<td>Resource</td>
<td>V-2 to V-10</td>
<td>6 ft oz</td>
<td>— 3 If — — 3 If — — 6 If — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Solstice</td>
<td>spike to V-8</td>
<td>variable</td>
<td>5 5 5 5 5 5 5 5 — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Status<sup>a</sup></td>
<td>4-36" or V-10</td>
<td>5 oz</td>
<td>4 4 4 4 4 4 4 4 — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>0-20" or V-6</td>
<td>0.75 oz</td>
<td>— — — — 4 — — 3 — 4 4 4 4 1 4 3</td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>0-24"</td>
<td>0.25 pt</td>
<td>5 If — — — 5 If 5 If — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Yukon</td>
<td>0-36"</td>
<td>4 oz</td>
<td>14 6 6 12 12 6 3 12 — — — — — — — —</td>
<td></td>
</tr>
<tr>
<td>Zemax</td>
<td>0-30" or V-8</td>
<td>2.4 qt</td>
<td>3 3 3 3 3 3 3 3</td>
<td>— — — — — — — —</td>
</tr>
<tr>
<td>Zidua</td>
<td>V-4</td>
<td>2.5 oz</td>
<td>Zidua does not control emerged weeds.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: If = leaf; NR = no restrictions; BH = before harvest; BT = before tasseling; — = not labeled for control.

^a Drop nozzles allow these herbicides to be applied before stages listed: Accent Q up to 36 inches or 10 collars; dicamba, Hornet, Liberty 280 SL, NorthStar, and Status up to 36 inches; Option up to V8; 2,4-D before tasseling.
Insecticides suggested in this section are intended as a guide to assist you in selecting chemical control options. While suggestions provide an overview of product registrations for specific field crop insect pests, this guide is not intended as an exhaustive insecticide label source. Product inclusion or omission does not imply endorsement by the University of Wisconsin-Extension. Keep in mind that insecticide active ingredients are produced by more than one manufacturer, and directions for use, rate, and method of application may vary by formulation. Therefore, always read the insecticide label completely before using the material.

A number of the products listed in this section are restricted-use insecticides. We discuss restricted-use pesticides in the beginning of this publication. Refer to appendix table 8-2 for a list of insecticides that currently require certification to be applied. It is possible that additional insecticides will be classified before the next growing season. Contact your county Extension agent for additional information on insecticide restrictions.

Common and trade names of insecticides are often used interchangeably. Trade names such as Lorsban are capitalized, while common chemical names, chlorpyrifos in this example, are not.

Chemigation

Some insecticides can be applied through certain sprinkler irrigation systems, as specified on the label, for control of various aboveground corn insect pests. Consult product labels for specific instructions. Wisconsin has stringent regulations regarding application of pesticides through irrigation water, and an approved anti-siphon system is required. Contact the Wisconsin DATCP for information on legal requirements.

Predicting soil insect control needs for corn

Crop rotation patterns significantly influence the occurrence and extent of soil insect problems in corn. Awareness of these relationships, along with field scouting information, can help predict the need for a planting-time application of a soil insecticide, a seed-applied insecticide, or selection of a Bt corn hybrid. Exceptions occasionally can occur because of weather fluctuations, abundance or lack of natural enemies, tillage, etc. The following are guidelines for predicting soil insect problems in corn and selecting insect pest management tactics accordingly.

Continuous corn

Corn rootworm is known as a continuous corn pest because it requires corn roots to complete development. Rootworms cause damage beginning the second year when overwintering eggs hatch and larvae feed on corn roots to complete development. (Larvae that emerge in fields planted to non-host crops such as alfalfa or soybean will not complete development.) A corn rootworm control strategy usually is needed at planting in the rootworm area of the state. A line from Green Bay to Eau Claire typically marks the northern limits of corn rootworm problems during most years. However, along the Mississippi River, relatively high populations extend into St. Croix County. Muck and non-irrigated sandy soils seldom have damaging rootworm populations. For more details about rootworms and control options, see the discussion under Insect Pests.

Corn after soybeans

The incidence of soil insect problems in corn after soybeans is typically low, and the use of a plant-box or commercial seed treatment for control of soil-dwelling secondary insect pests (e.g., seed-corn maggot, wireworm, white grub) will normally be sufficient. Check seed-applied insecticide labels for pests controlled and/or suppressed. Soil-applied insecticides are seldom necessary.

In most of the state, corn rootworm damage is not a problem when corn is rotated annually with soybeans or other crops, as the adult beetles primarily lay their eggs in cornfields. Larvae that hatch in fields other than corn will starve to death. This makes crop rotation a highly reliable cultural control.

In some cases, not all northern corn rootworm eggs will hatch after the first winter. Some northern corn rootworm eggs remain in a dormant state for two or more winters before hatching. This behavior, known as extended diapause, is more prevalent in states west of Wisconsin. In a 3-year successive rotation of corn/soybean/corn, this can result in economic rootworm injury during the year that corn follows soybean. Therefore, damage to corn that follows soybean in rotation does not necessarily mean that rootworm beetles laid eggs in soybean. Additionally, corn rootworm beetles present in cornfields that follow soybean, alfalfa, or another crop in rotation did not necessarily emerge from the soil in those fields. Rootworm beetles are mobile and are capable of dispersing to new fields very soon after emergence. For areas
not affected by the variant western corn rootworm (see next section), if beetles are present in cornfields that follow a crop other than corn, they are likely migrants and did not emerge in such fields.

Although rootworm beetles can be found in “clean” soybean fields, they are especially attracted to weedy fields or those that contain volunteer corn. In these cases, rootworm beetles may deposit enough eggs in soybean fields to cause economic damage when corn is planted the following year. Control of grassy weeds and volunteer corn will help reduce potential problems from corn rootworm as well as larval wireworm, white grub, stalk borer, hop vine borer, and potato stem borer the following year, since the weeds can be attractive to egg-laying adults during the summer.

Corn after soybeans: Variant western corn rootworm

A variant strain of the western corn rootworm has developed a behavioral adaptation to the corn-soybean rotation in some areas of the Midwest, including parts of Wisconsin. This strain no longer requires corn as an egg-laying site. Like normal western corn rootworm beetle populations, this variant moves readily between corn and other crops. Unlike normal rootworm beetles, this variant can lay heavy populations of eggs in soybean fields, resulting in economic injury to corn planted the following year.

The variant western corn rootworm (variant WCR) has been documented in southern Wisconsin, the northern two thirds of Illinois, much of Indiana, southern Michigan, and western Ohio. A team of UW-Extension researchers, corn-soybean growers, and Wisconsin DATCP specialists confirmed its presence in Kenosha, Racine, Walworth, and Rock counties. Contact your UW-Extension agent for the most current information on variant WCR in your area.

In affected areas, producers and consultants should take steps to minimize the risk of corn rootworm damage to first-year corn following soybeans. It’s important to scout to determine whether the variant WCR is present in sufficient numbers to cause economic damage. Treating first-year corn without first establishing the need is both costly and environmentally unsound.

Unbaited yellow sticky traps, available from Gempler’s and Great Lakes IPM, are used to monitor beetle abundance in soybeans and predict the need for at-planting corn rootworm treatment the following year. For assistance implementing a scouting program, contact your county Extension agent.

If you determine that control is needed, there are several options for reducing damage the following year:

- Use a granular or liquid soil insecticide at planting.
- Plant a Bt rootworm corn hybrid.
- Plant corn treated with a corn rootworm-rate insecticidal seed treatment.

Corn after soybeans

True grass sod, including grassy legume fields, may harbor pests such as white grubs, wireworms, cutworms, sod webworms, and grasshoppers. Species of wireworms and white grubs that take longer than 1 year to develop also may be a problem the second and third years if not controlled the first year. Seedcorn maggot flies also may be attracted to the increased organic matter of a grass sod broken for corn planting.

Insecticidal seed treatments will control seedcorn maggots, but soil insecticide treatments may be needed for pests like wireworms and white grubs. Several soil insecticides labeled for corn rootworm control are also labeled for control of wireworms and white grubs. In addition, low-rate nicotinoid insecticidal seed treatments are labeled for wireworms and white grubs.

Minimum tillage of true grass sods is favorable to such corn insect pests as cutworms, armyworms, grasshoppers, and stalk borers.

Corn after alfalfa

Rootworms occasionally can be a problem in corn following alfalfa, but this is far less common than damage to corn planted after soybean. Adult rootworm beetles attracted to alfalfa or weed blossoms during the summer egg-laying period occasionally have laid enough eggs to cause economic damage the following summer.

There also is a potential for damage from wireworms and white grubs when corn follows grassy alfalfa and clover fields.

Some insecticides are labeled for preventative treatment for occasional pests such as black cutworm, early-season armyworm, and stalk borer, particularly when corn is no-till planted into sod. However, because of the erratic occurrence of these pests, scouting of seedling corn plants combined with timely insecticide application at insect pest thresholds is a more cost-effective and environmentally sound approach. Your county Extension agent can assist you in developing a scouting program.

Corn after sudangrasses

Although corn rootworm beetles can be found in sudangrass, sudex, and other similar grasses, the beetles apparently return to cornfields to lay their eggs, because we have not observed rootworm damage in corn planted after these grasses in rotation.

Insect pests

Armyworm

The true armyworm causes serious damage in some areas of the state almost every year. Armyworms will climb into corn whorls or even attack
tasseled corn and “rag” the leaves from the outside edges toward the midrib, sometimes leaving only midribs on the stalk or eventually eating the stalks to the ground. Defoliation below the ear zone is not as detrimental as leaf feeding above the ear.

Armyworms do not overwinter in Wisconsin. The adult moth migrates to the state on storm fronts each year. Therefore, arrival of this flight varies each year. Concentrate scouting activities in seedling cornfields that have significant grassy weed population and/or are no-tilled into an alfalfa field or planted into grassy cover crops such as rye.

The summer generation of armyworm moths will lay eggs on weedy grasses in cornfields; thus grass weed control in corn is important. If a cornfield has a heavy infestation of grassy weeds, scout the field carefully. Look on the ground, under debris, and on the weeds.

“Weed-free” fields will not guarantee immunity from armyworm attack. The armyworm can also migrate into corn from nearby harvested alfalfa, pea, or small grain fields or other grassy areas. Monitoring these kinds of fields when they border corn is necessary. When the armyworm migrates into corn from adjoining areas, only a few border rows may need treatment if infestation is detected early enough.

If you find signs of armyworm feeding, check five sets of 20 plants at random. Record the number of damaged plants and the number of worms per plant. Spot treat, if possible, when you find two or more armyworms (0.75-1.0 inch or smaller) per plant on 25% of the plants or one per plant on 75% of the plants. Finding the worms while they are still small and before damage to corn is severe increases the value of control. Young worms also are easier to control than those nearing maturity.

Corn earworm

Hybrid seed corn production fields occasionally need protection from corn earworm. Moths lay eggs on green and yellow color-stage silks, and larvae crawl down the silk channel and feed on kernels. Corn earworm larvae can be confused with European corn borer or western bean cutworm larvae, which also feed within the ears.

Pheromone traps can be used to trap male moths and monitor population trends. Treat with an insecticide (see table 2-11) at 10% silk if traps capture 5-10 male moths/night. A second application may be needed 7-10 days later if traps continue to catch 5-10 moths per night. Moths will not lay eggs on dry silks.

Corn flea beetle

As the name implies, corn flea beetles are small (0.6 inch) and will leap great distances when disturbed. These black beetles overwinter in clumps of grass near cornfields and move to corn seedlings shortly after they emerge in the spring. Feeding damage appears as long, thin, silvery-white streaks. Although heavily injured leaves turn brown and wilt, beetle populations in Wisconsin are rarely large enough to cause this type of damage. The corn flea beetle is more important for its role in transmitting a bacterial disease known as Stewart’s wilt or Stewart’s disease. This disease is an occasional problem in Wisconsin. Beetles can spread the bacterium *Erwinia stewartii* during feeding. The bacterium can overwinter within the beetle, on plant debris, or in the soil. For more information about Stewart’s wilt, see the **Corn Diseases** section.

Sweet corn and inbred corn can be highly susceptible to Stewart’s wilt and should be scouted from seedling emergence to the V-5 stage. An insecticide may be warranted if there are two to three beetles per plant and if 10% of the plants exhibit feeding injury.

Flea beetle survival and Stewart’s wilt potential are predicted using the average monthly temperatures for December, January, and February. Typically, Stewart’s wilt causes significant losses only one or two years in a 20-year period. For flea beetle predictions, consult early spring issues of the UW-Extension Wisconsin Crop Manager newsletter (ipcm.wisc.edu/wcm) or DATCP’s Pest Bulletin (datcpservices.pestbulletin.wi.gov).

Corn leaf aphid

Corn leaf aphids are greenish-blue, soft bodied, and about the size of a pinhead. Their sap sucking stresses plants and interferes with ear production. Soil moisture stress reduces the plant’s ability to withstand attack. Moisture stress and heavy infestations (tassel and upper leaves plastered with aphids) can result in barren plants.

The most critical period for damage is the late-whorl to pollen-shed stages. If aphid populations are high by the time corn has tasseled and pollinated, major damage will already be done. Because of this, begin scouting fields approximately 2-3 weeks before tassel emergence. (You will have to pull and unroll whorl leaves to do this.) Treatment is suggested if 50% of the plants have more than 50 aphids per plant, and plants are in the late-whorl to early tassel stages.

Apply sprays before tassels have completely emerged but not before the upper whorl leaves have opened to expose the tassels. Remember that the presence of predators and adequate soil moisture can influence treatment decisions.

Corn rootworm

Northern and western corn rootworms overwinter eggs in the soil. Larvae usually can be found feeding on developing corn roots by mid-June, peaking by mid-July. After completing three larval stages,
Larvae will leave the roots and pupate. The pupae change into adults that make their way out of the soil to feed on pollen, silks, and in the case of the western corn rootworm, even tender corn foliage. At Arlington, Wisconsin, first adults normally begin to appear in early July. Because of the prolonged egg hatch, all stages (larvae, pupae, and adults) can be found in July and August. Most of the eggs will be laid from mid- to late August.

The potential for damage and need for a rootworm control strategy in fields of corn that follow corn are based on the number of beetles present in fields during the summer egg-laying period. If beetle numbers averaged 0.75 or more per plant during August, the use of a corn rootworm control tactic (soil insecticide, seed treatment, or Bt corn rootworm hybrid) is recommended if corn is planted again in the field the following year. Consult UW-Extension publication Corn Rootworms (A3328) at learningstore.uwex.edu for information about scouting cornfields for rootworm beetles and about predicting the need for rootworm control.

Rootworm are controlled by crop rotation. Where cropping systems allow and where the variant western corn rootworm is not established, crop rotation is an excellent method of controlling corn rootworm. Larvae will perish soon after hatching if a crop other than corn is planted. Resistance to insecticides and Bt proteins is possible whenever a population of insects is subjected continually to selection pressure from one insecticide class. Because of this, we strongly encourage the use of crop rotation as a control alternative for corn rootworm. Late-planted cornfields are attractive to rootworm beetles. The corn’s green silks and pollen can attract large numbers of beetles from surrounding fields and result in a large number of eggs being deposited in the soil. Since soil insecticides and Bt hybrids will not control all of the rootworm larvae, an unacceptable amount of root feeding could still occur in fields with heavy egg populations. In these cases, crop rotation is a better alternative when possible.

Rotation resistant corn rootworms. In the south/southeast area of Wisconsin, western corn rootworm beetles have adapted to a corn/soybean rotation and have been known to lay eggs in soybean fields. However, in recent years, the report of this phenomena has been infrequent. For fields in this area of Wisconsin, use the yellow sticky trap method to determine damage potential in corn planted after soybean. In states other than Wisconsin, Northern corn rootworms have adjusted to a corn/soybean rotation through adoption of a two year life cycle called extended diapause. This phenomenon requires two winter chilling periods before eggs hatch. Extended diapause has not been confirmed in Wisconsin but may happen on rare occasions.

Insecticidal control of rootworms. Although a soil insecticide will not kill all corn rootworms in a field, the

Table 2-8. Soil insecticides labeled for rootworm control at planting

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Class</th>
<th>Ounce of product/1,000 ft of row</th>
<th>40" rows</th>
<th>38" rows</th>
<th>36" rows</th>
<th>30" rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular formulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztec 2.1G</td>
<td>organophosphate + synthetic pyrethroid</td>
<td>6.7</td>
<td>5.5</td>
<td>5.8</td>
<td>6.1</td>
<td>7.3</td>
</tr>
<tr>
<td>Aztec 4.67G</td>
<td>organophosphate + synthetic pyrethroid</td>
<td>3.0</td>
<td>2.45</td>
<td>2.58</td>
<td>2.75</td>
<td>3.27</td>
</tr>
<tr>
<td>Aztec HC</td>
<td>organophosphate + synthetic pyrethroid</td>
<td>1.5</td>
<td>1.23</td>
<td>1.29</td>
<td>1.36</td>
<td>1.63</td>
</tr>
<tr>
<td>Counter 15G ¹</td>
<td>organophosphate</td>
<td>6</td>
<td>4.9</td>
<td>5.2</td>
<td>5.4</td>
<td>6.5</td>
</tr>
<tr>
<td>Counter 20G ¹</td>
<td>organophosphate</td>
<td>8</td>
<td>6.5</td>
<td>6.9</td>
<td>7.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Force 3G</td>
<td>synthetic pyrethroid</td>
<td></td>
<td>4</td>
<td>3.3</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Lorsban 15G</td>
<td>organophosphate</td>
<td>8</td>
<td>6.5</td>
<td>6.9</td>
<td>7.3</td>
<td>8.7</td>
</tr>
<tr>
<td>SmartChoice 5G</td>
<td>organophosphate + synthetic pyrethroid</td>
<td>4.5–5.0</td>
<td>3.7–4.1</td>
<td>3.9–4.3</td>
<td>4.1–4.5</td>
<td>4.9–5.4</td>
</tr>
<tr>
<td>Liquid formulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brigade 2EC</td>
<td>synthetic pyrethroid</td>
<td>0.30</td>
<td>3.9</td>
<td>4.1</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Capture LFR</td>
<td>synthetic pyrethroid</td>
<td>0.49</td>
<td>6.4</td>
<td>6.8</td>
<td>7.1</td>
<td>8.5</td>
</tr>
<tr>
<td>Force CS</td>
<td>synthetic pyrethroid</td>
<td>0.46–0.57</td>
<td>6.0–7.5</td>
<td>6.5–8.0</td>
<td>7.0–8.0</td>
<td>8.0–10.0</td>
</tr>
</tbody>
</table>

¹ ALS inhibiting herbicides should not be used if Counter 15G and 20G has been applied to corn at the time of planting.
level of control achieved normally is adequate to prevent economic damage. However, extremely high larval populations, heavy rains, improper calibration and/or incorporation, and other factors can result in poor control.

The following are suggestions for using rootworm insecticides.

- **At planting:** Apply a granular or liquid insecticide labeled for rootworm control as an in-furrow or banded application at the labeled rate (table 2-8). Refer to product label for instructions.

- **At cultivation:** Formulations of Counter (15&20G), Force 3G, or Lorsban 15G granules can be applied at the base of stalks with a cultivator applicator at labeled rates and covered lightly with soil. Read labels thoroughly before use. Limitation may occur regarding rates, timing of application and potential interaction with herbicides. Chlorpyrifos (e.g., Lorsban Advanced) is also labeled for application at cultivation. Apply the treatment to each side of the row immediately ahead of the cultivator shovels. Refer to the label for complete details and product restrictions. Use extreme caution when using liquid formulations.

 Treatments are most effective when applied close to peak egg hatch, usually between May 25 and June 15. Such applications should be done no later than mid-June; it is suggested only as a rescue treatment because dry weather following application can limit insecticide activation and result in marginal control. Therefore, planting time treatments are preferred.

- **Control of rootworm beetles to prevent egg laying:** Properly timed foliar applied insecticide applications may reduce beetle populations during the egg laying period. However, this practice is not suggested as a primary larval control practice that eliminates the need for soil insecticides the following year to protect corn roots. Its utility may be when adult beetle numbers are excessively high and there is concern that Bt hybrids and soil applied insecticides may not adequately control larval feeding in continuous corn. These situations are rare in Wisconsin. Success using this program requires frequent and careful scouting. Scouts must be able to differentiate between the two beetle species (western and northern), determine the sex of the beetles, and tell when the females are gravid (contain eggs).

 Treatments include several foliar-applied insecticides. These insecticides are hazardous to honeybees. Do not apply or allow product to drift onto blooming crops and/or blooming weeds if bees are foraging the area to be treated. Notify local beekeepers when using such programs.

 Single application treatments for beetle control are not always sufficient due to beetle migration and weather conditions. Aerial application is standard in an adult beetle control program.

- **Use of soil applied insecticides with Bt Traits:** This practice has merit only when extremely high beetle counts were observed the previous year. You should expect your Bt trait or soil applied insecticide to perform adequately under normal beetle populations. The combination of a soil applied insecticide and Bt hybrid is not recommended as a resistance management tool.

- **Alternating the use of insecticide active ingredients:** Avoid using the same insecticide for several consecutive years. Continuous use of the same class of material, uninterrupted by crop rotation, or periodic rotation of insecticide class can lead to development of insect resistance and loss of product efficacy.

 - If the material you used last year performed poorly, switch to another insecticide class this year or rotate to a crop other than corn if possible.
 - Avoid using the same organophosphate or pyrethroid during several consecutive years.

Insecticidal seed treatment for rootworm control. Seed treatment with insecticides from the nicotinoid class of compounds are labeled for corn rootworm. These compounds are systemic, translocated within the plant as the seed germinates and the plant grows. This is a selective, early-season chemical control tactic as the active ingredient is applied directly to the seed and not the surrounding soil.

 Cruiser Extreme 1250 (thiamethoxam) and Poncho 1250 (clothianidin) are labeled at 1.25 mg ai/kernel for corn rootworm. Corn seed is treated by commercial seed treaters in conjunction with seed dealers before it is bagged and sold. Check with your seed dealer to obtain corn seed treated at the rate labeled for corn rootworm.

Bt corn for corn rootworm control. Transgenic Bt corn contains a gene from the soil bacterium *Bacillus thuringiensis* (Bt) enabling the plant to express Bt toxin active against rootworms. For details, see the section on Transgenic Bt Corn.

Cutworm

Although glassy and sandhill cutworms can cause serious damage, the most common cutworm pest in Wisconsin corn is the black cutworm. Young cutworms feed upon corn foliage; early detection of this injury allows time to treat before extensive cutting occurs. For this reason, monitor fields carefully as plants emerge. Check for signs of leaf feeding, cut, wilting, or missing plants. Leaf feeding is due to small
Cutworms (less than 0.5 inches long); cutworms start to cut plants when they reach the fourth instar.

It is difficult to set a threshold for treatment because several factors influence this decision (stage of plant growth, original plant population, growth stage of cutworms, soil moisture, etc.). The most important aspect of cutworm control is careful field scouting as soon as plants begin to emerge. Remember that there have been instances of cutworms cutting plants as fast as they emerge.

Carefully monitor wet fields, low wet areas within fields, late-planted fields, and fields with low-growing winter annual weeds, where cutworm problems tend to be most common. Marking off defined areas of a field makes it easier to evaluate the cutworm situation. Check these areas every 2-3 days for at least 2-3 weeks after corn begins to emerge. Keep records of plant stand, number of cut plants, and plants with leaf feeding. This helps evaluate whether populations are increasing or decreasing. If you find occasional cut plants, consider corrective measures. One cutworm is capable of cutting several plants, and the level of damage can increase dramatically from one day to the next. Consult table 2-9 for assistance in determining how long a cutworm will feed and continue to damage corn. For example, a fourth instar (stage) cutworm (larva) will feed for approximately 25 days and will cut off four plants if the plants are in the 1-leaf stage.

Body length is not always an accurate indicator of how “old” a cutworm is. The best technique is to measure the width of the insect’s head capsule. Place the head capsule (head) of the cutworm between the shaded areas under the head capsule width column in table 2-9 and match it to one of the size categories available. This will help you determine the age of the cutworm and approximately how long it will continue to feed on corn.

Treatment is suggested when 2-5% of the plants have been cut. Broadcast spray insecticide when the suggested threshold is reached. Rescue treatments can be very effective for black cutworms if infestations are found soon enough. However, hot, dry weather can reduce the effectiveness of these treatments by causing the black cutworm to spend more time underground, thereby reducing exposure to the insecticide. Incorporating Lorsban Advanced spray with shallow cultivation or a rotary hoe during such weather conditions may enhance activity. However, do not incorporate synthetic pyrethroid insecticides, as this may reduce their cutworm activity.

If widespread cutworm damage necessitates replanting, you may need to use preemergence rescue treatments. Depending on cutworm size when corn is replanted, feeding injury could occur before, during, and after seedling emergence. In these situations, treating fields after planting but before seedling emergence may be advisable.

Soil insecticides, such as Aztec 2.1G, Brigade 2EC, Force 3G and CS, and Lorsban 15G, are labeled for application at planting time for cutworm control. These products should be applied the same as for rootworm control (refer to table 2-8). Current research suggests that some of these products are relatively effective in controlling light to moderate infestations when applied at planting. However, data for heavy infestations are limited, and reports of unacceptable levels of damage from heavy infestations have occurred. Because of these factors and the difficulty of predicting cutworm outbreaks, the “preventive approach” to black cutworm control is not suggested. Field scouting and rescue treatment is more reliable.

European corn borer

The European corn borer has two generations per year in most of Wisconsin. Borers overwinter as 5th instar larvae in cornstalks and large-stemmed weeds. Moths emerge to begin warm-night egg laying on undersides of leaves about mid-June (in the extreme south of the state). Eggs hatch into very small, black-headed, whitish, smooth larvae (borers) that crawl into the whorl. Early planted corn is most apt to be infested. Late-planted corn usually avoids first-generation borers but is attractive to the second generation. “Early” borer leaf feeding shows as irregular pinhole damage in leaves growing out of the whorl. “Recent” leaf feeding can be found down in the whorl and is evidence of live borers. Once corn reaches 18 inches extended leaf height, examine 10 consecutive plants in 10 areas of the field for leaf feeding. Pull the whorl leaves from two infested plants in each area and unroll the leaves to look for corn borer larvae. Calculate the percentage of plants with recent leaf feeding (“plants infested”) and the average number of European corn borer larvae per infested plant. Consult the Management worksheet for first-generation borer information.

Table 2-9. Guide to black cutworm development and damage in corn

<table>
<thead>
<tr>
<th>Larval instar (stage)</th>
<th>Head capsule width</th>
<th>Approximate days left to feed</th>
<th>Potential number of plants that may be cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-leaf</td>
<td>2-leaf</td>
<td>4-leaf</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Management worksheet for FIRST-GENERATION European corn borer

\[
\begin{align*}
\text{number of egg masses/plant} & \times 2 \text{ borers/egg mass} = \text{borers/plant} \\
\text{borers/plant} & \times 4\% \text{ loss/bo}r = \text{\% yield loss} \\
\text{\% yield loss} & \times \text{expected yield (bu/a)} = \text{bu/a loss} \\
\text{bu/a loss} & \times \text{${\$}$ price/bu} = \text{loss/a} \\
\text{loss/a} & \times 75\% \text{ control} = \text{preventable loss/a} \\
\text{preventable loss/a} & - \text{cost of control/a} = \text{gain (+)} \text{ or loss (–) per acre if treatment is applied} \\
\end{align*}
\]

\[a \text{ Use cumulative counts, taken 7 days apart.} \]
\[b \text{ Assumes a survival rate of two borers/egg mass.} \]
\[c \text{ Use 3\% loss/bo}r \text{ if infestation occurs after silks are brown. The potential economic benefits of treatment decline rapidly if infestations occur after corn reaches the blister stage.} \]

Management worksheet for SECOND-GENERATION European corn borer

\[
\begin{align*}
\text{number of egg masses/plant} & \times 2 \text{ borers/egg mass} = \text{borers/plant} \\
\text{borers/plant} & \times 4\% \text{ loss/bo}r = \text{\% yield loss} \\
\text{\% yield loss} & \times \text{expected yield (bu/a)} = \text{bu/a loss} \\
\text{bu/a loss} & \times \text{${\$}$ price/bu} = \text{loss/a} \\
\text{loss/a} & \times 75\% \text{ control} = \text{preventable loss/a} \\
\text{preventable loss/a} & - \text{cost of control/a} = \text{gain (+)} \text{ or loss (–) per acre if treatment is applied} \\
\end{align*}
\]

\[a \text{ Use cumulative counts, taken 7 days apart.} \]
\[b \text{ Assumes a survival rate of two borers/egg mass.} \]
\[c \text{ Use 3\% loss/bo}r \text{ if infestation occurs after silks are brown. The potential economic benefits of treatment decline rapidly if infestations occur after corn reaches the blister stage.} \]

Corn borer (above) to determine whether treatment is necessary.

The best time to control first-generation corn borers is during a period of 800-1,100 accumulated, modified growing degree-days (above 50°F average). In extreme southern Wisconsin this falls around July 1-4.

Second-generation European corn borer egg-laying occurs over a long period of time, and infestations can go unnoticed until ears begin to drop and stalks begin to break in the fall. Due to the extended egg-laying period, one sampling of a field is not sufficient. Scout fields weekly looking for white egg masses on the undersides of leaves near the midrib. Most of the eggs will be laid on leaves near the ear and above. Use the Management worksheet for second-generation corn borers (see above) to determine whether treatment will be economically worthwhile. If possible, treat when tiny black dots are apparent on most of the egg masses. At this “black-head” stage, the eggs are almost ready to hatch.

Most borers are killed when corn is cut for silage or shredded for fodder if stubble is under 2 inches. Dry-stalk shredding may kill 80% of the borers. Plowing under crop stubble and shredding stalks in the fall to destroy overwintering larvae will reduce corn borer populations. However, moldboard plowing is often unacceptable because of the potential for soil erosion.

Bt corn for European corn borer control. Transgenic Bt corn contains a gene from the soil bacterium Bacillus thuringiensis (Bt) enabling the plant to express Bt toxin active against European corn borers.

Japanese beetle

Japanese beetle adults are about 0.6 inches long and 0.4 inches wide, with metallic, copper-colored wing covers and a green thorax and head. Adults emerge in mid-June, feed on a wide range of host plants and can move to field and sweet corn. The most significant damage comes when Japanese beetles feed on corn silks during pollination.

During July and August, adults move to grass and turf to lay eggs. They can also lay eggs in soybean fields and to a lesser extent, cornfields. Eggs hatch into small white grubs that feed on grass roots until fall temperatures cool. Third instar grubs move down in the soil profile and are inactive during winter. In early spring, grubs feed, pupate, and then emerge from the soil as adult beetles in late June.

Consider a foliar insecticide treatment during tasseling and silking if there are three or more beetles per ear, silks have been clipped to less than 0.5 inch, and pollination is less than 50% complete. Obtain a representative field sample to determine whether field border treatment is sufficient or whole field treatment is necessary. Adults are highly mobile during July and August. Beetles present in the field when treated with a foliar insecticide will be killed, but beetles moving into treated fields after application can result in reinestation. As one of several species of white grubs, Japanese beetle larvae are an occasional pest of corn roots in corn following sod, set-aside, some cover crops, or soybean.

Slugs

“Slug” is a common name given to a group of terrestrial organisms in the phylum Mollusca. Typically, they are referred to as “snails without a shell”. Slugs are soft-bodied, legless, slimy and may be light to dark colored. Most slugs are herbivorous and will feed on a variety of broadleaf and grass plants including corn and soybean. Feeding may be of economic importance under no-till conditions and/or high weed pressure. Slugs may be found in small grains and alfalfa, however, rarely are they of economic importance.

Life stages may not always be synchronized, allowing for various life stages to be present at the same time. It is possible for slugs to overwinter as adults, juveniles
and eggs. However, in cold winters without snow cover, eggs offer the best chance of survival. Slug development, life cycle, and over-wintering survival has not been well researched in Wisconsin.

Slugs have a “rasp-like” mouthpart called a radula and damage seedling corn plant by scraping off leaf tissue. These feeding scares are usually longitudinal and may initially leave the wax-like cuticle intact. This symptom is often called “window paining”. Eventually the cuticle will weather and drop off leaving long, narrow holes in leaves.

Slugs feed nocturnally and occasionally on cool, cloudy days. During daylight hours they hide under soil clods and plant debris. Therefore, minimal till and no-till fields have the greatest possibility for damage.

Initiate scouting for slugs in field areas with a history of slug feeding. Look through debris for eggs, juveniles and/or adults in early spring when corn is emerging. Record percentage of plants effected, degree of defoliation and identify those field areas where slug activity is present. Economic thresholds have not been established.

Reducing crop residue through primary or secondary tillage including row cleaners for strip-till can be effective. However, many growers with slug problems may be committed to reduce or no-tillage because of conservation plans. Early planting may give corn enough of an early start to be able to outgrow slug damage. Make sure the seed furrow is close during planting because slugs can feed on the growing point and kill corn. Slugs have several natural enemies including ground and rove beetles, centipedes, spiders and several other invertebrate predators. Insecticides do not control slugs. Consider use of a bait if preventive measures are ineffective.

Stalk borer

Stalk borer moths predominately lay their eggs on grass weeds during late summer and fall. In addition, giant ragweed is one of the few broadleaf plants to serve as a preferred egg-laying host. Larvae will hatch from these hosts in the spring and move quickly to corn. The first indication of damage is a series of small pinhole feeding sites running across the leaves of V-1 corn. As the larvae grow, the feeding holes will increase in size, and the larvae will tunnel into the plant. This stem boring can be seen in the wilting of the central leaves of the seedling. When this type of injury is widespread, it is too late to apply an insecticide.

Stalk borers tunnel only in the aboveground portions of the stem, whereas cutworms, hop vine borer, and potato stem borer feed in the underground portion of the stem.

Damage will often be heavy in the four to eight rows that are near fencerows, grass terraces, and waterways. In these cases, the larvae are migrating from adjacent vegetation. Patches of injury throughout the field indicate significant levels of host weeds that escaped the weed control program from the previous year. The best insect management tactic is to modify your weed control program using a different herbicide, crop rotation, or increased mechanical cultivation to control these host weeds.

Small corn is most susceptible to injury; once plants reach the V-7 stage it is unlikely that they will be killed by stalk borers. Research suggests scouting border rows when 1,300-1,400 degree days (base 41°F) have occurred. Stalk borer movement from grassy areas within and adjacent to corn fields first occurs at about 1,110 degree days and peaks when about 1,650 degree days are accumulated. When 1,300-1,400 degree days have accumulated, scout corn to verify that stalk borers are moving from grass to corn by looking for larvae inside the whorls. If an insecticide is needed, treat between 1,400-1,700 degree days.

Larvae will start to move when they have outgrown the grass stems in which they have been feeding. However, damage from larvae originating within the field (from the previous year’s weed patches) will start earlier because corn is the only food source. Growers should map these spots during fall harvest and check them the following year, starting at about 900-1,000 degree days. For spray management decisions, consult table 2-10.

Two-spotted spider mite

Spider mites are relatives of insects and are so small that a 10X or greater magnification is required for them to be seen distinctly. They damage plants by piercing the cells and sucking sap. Small chlorotic lesions on the leaf surface are the first indications of damage. As mite populations build and damage progresses, the webbing produced by the mites will become apparent, and leaves may die. Plant death is possible if populations are heavy.

Mites are not a problem in Wisconsin unless dry weather persists. Infestations normally start at field edges where mites have migrated from adjacent weeds, alfalfa, or other vegetation. Control is suggested when the lower 1/4-1/3 of the canopy is injured (live mites and leaf injury symptoms), and corn has not dent-ed. Effects on corn yield are more severe when mites damage leaves at or above the ear level.

Insecticides applied for mite control will not kill eggs, and growers will have to sample the field 4-5 days after the initial spray and look for mite adults and nymphs. A second application may be necessary.

Mites are usually on the undersides of plant leaves, making treatment difficult. By air, apply no less than 4-5 gallons of finished spray per acre. During periods of extreme heat, try to make applications late in the day.
to reduce the amount of insecticide lost by volatilization.

Western bean cutworm

Western bean cutworm (WBCW) larvae feed on ears — damaging and consuming kernels. Secondary pathogens and mold are frequently associated with larval feeding in ears. Unlike corn borers, they do not tunnel into stalks. Adult WBCW are brown-colored moths, 0.75-inch long with an extended wingspan of 1.5 inches. There are three distinctive markings on each forewing: a white wing bar along the front leading edge, one circular spot approximately in the center, and another boomerang-shaped spot toward the tip of the forewing.

Moths lay white egg masses on the upper surface of corn leaves. These egg masses contain 20-200 tightly clustered eggs. As they develop, the eggs change color from creamy white to tan. They remain tan for 2-5 days, then turn a deep purple 12-24 hours before the larvae emerge. First instar larvae are dull orange with a black head. Full-grown larvae are 1.5 inches long and tan in color, with two, broad brown stripes on the pronotum (“neck” area behind the head). This insect can be distinguished from the corn earworm by the dark stripes behind the head and the absence of dark spines, tubercles (warts), or stripes on the side of the body.

WBCW has one generation per year and overwinters as full-grown larvae in the ground inside a soil chamber. Spring development begins when temperatures exceed 50°F. Larvae pupate in the soil in May, and moths begin to emerge in late June or early July depending upon degree day heat unit accumulation, which varies slightly by area of the state. Half of the season’s WBCW moth population will have emerged at 1,422 degree days, known as the peak flight period.

The female moth is most attracted to corn just before tasseling and lays eggs on the upper leaf surface of the topmost leaf on the plant and on leaves in the ear zone above and below the developing ear. If the tassel has not yet emerged when eggs hatch, larvae crawl into the whorl and feed on pollen. As the tassel emerges, larvae switch to feeding on green silks and enter the developing ear through silk channels or chew directly through the husk to feed anywhere on the ear. Multiple larvae may be found feeding on one ear.

Pheromone traps or degree days can be used to monitor adult emergence, egg-laying, and larval hatch in the field. For details, consult midsummer issues of the UW-Extension Wisconsin Crop Manager newsletter (ipcm.wisc.edu/wcm) and the DATCP Wisconsin Pest Bulletin (datcp-services.pestbulletin.wi.gov).

Once WBCW degree-day accumulations indicate 25% moth emergence or when the first moths are detected in a pheromone trap in your area, examine 20 consecutive corn plants at five locations in the field to obtain a representative field sample. Check the upper three to four leaves of each plant and leaves above and below the ear zone for eggs and small larvae. Scout fields that are tasseling first. When scouting post-whorl corn, also look for small larvae on leaf axils, at the intersection of the leaf and stalk, and on silks and husks.

Foliar insecticides effectively suppress larval populations but only if applied before larvae enter the ear to feed. Once larvae have tunneled into the ear, they’re protected from foliar insecticides.

For field corn, insecticide treatment should be considered when 5% of 100 plants sampled have egg masses and/or small larvae; for processing sweet corn the threshold is lowered to 4% infestation. Application timing is critical. In fields that have reached or exceeded economic

<table>
<thead>
<tr>
<th>Leaf stage</th>
<th>$3/bu</th>
<th>$4/bu</th>
<th>$5/bu</th>
<th>$6/bu</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>5.8</td>
<td>4.9</td>
<td>4.3</td>
<td>3.8</td>
</tr>
<tr>
<td>175</td>
<td>4.3</td>
<td>3.7</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>200</td>
<td>3.5</td>
<td>3.0</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td>225</td>
<td>3.0</td>
<td>2.5</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>350</td>
<td>4.2</td>
<td>3.6</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>375</td>
<td>3.5</td>
<td>3.0</td>
<td>2.7</td>
<td>2.4</td>
</tr>
<tr>
<td>400</td>
<td>4.7</td>
<td>4.5</td>
<td>4.2</td>
<td>3.7</td>
</tr>
<tr>
<td>450</td>
<td>3.7</td>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>500</td>
<td>4.7</td>
<td>4.0</td>
<td>3.5</td>
<td>3.1</td>
</tr>
<tr>
<td>550</td>
<td>4.3</td>
<td>3.7</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>5.0</td>
<td>4.3</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>4.9</td>
<td>4.3</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>5.7</td>
<td>4.9</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>6.9</td>
<td>5.7</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>7.9</td>
<td>6.9</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>9.9</td>
<td>8.9</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>11.9</td>
<td>10.2</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>13.9</td>
<td>12.8</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>15.9</td>
<td>14.9</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td>17.9</td>
<td>16.9</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>19.9</td>
<td>18.9</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td>21.9</td>
<td>20.9</td>
<td>19.2</td>
<td></td>
</tr>
</tbody>
</table>

Thresholds based on $13.00/acre control costs and 80% control with insecticides. (Adapted from Erin Hodgson, Iowa State University.)
threshold, if eggs have hatched, the insecticide should be applied after 95% tassel emergence, but before larvae enter the silks. If egg hatch has not yet occurred and plants have tasseled, time insecticide application as close to expected egg hatch as possible, when egg masses have reached the dark purple color stage.

Transgenic corn is another option for managing WBCW in field corn. For details, see the Transgenic Bt Corn section.

Bt sprays and transgenic Bt corn for insect control

Bt sprays

The soil bacterium *Bacillus thuringiensis* (Bt) occurs naturally worldwide. Spores produced by the bacterium contain a protein that, when ingested by a susceptible insect, ruptures the insect’s midgut membrane, preventing further feeding and killing the insect. There are many different strains of the Bt bacterium, each with specificity toward different groups of insects.

Bt has been commercially available as a microbial foliar insecticide for Lepidoptera (caterpillar) larvae such as European corn borer for decades. Bt spray formulations are applied to leaves and other areas where the insect larvae feed. Bt sprays have a relatively short residual in the field, thus a well-timed single application or, more typically, multiple applications based on pest insect scouting and target pest life stage are necessary to maintain control.

Some microbial Bt sprays are listed by the Organic Materials Review Institute (OMRI) for use in USDA-certified organic production. Refer to product labels for Lepidoptera species controlled. Bt sprays are safe for beneficial insects, such as parasitic wasps that attack European corn borer eggs, and predators such as lady beetles that feed on other pest insect eggs, immatures, and/or adults.

Transgenic Bt corn

Transgenic Bt corn hybrids are genetically modified organisms (GMOs) in which corn has had a gene inserted from an unrelated organism, in this case, Bt. The introduced gene produces a Bt protein toxin with insecticidal activity against a particular target insect group. Plants with this trait are commonly referred to as Bt crops.

Unlike Bt microbial spray formulations that have a field residual measured in days, the Bt toxin in transgenic Bt corn is active for the life of the plant. This leads to more consistent and economic insect control in years when target insect populations reach economic threshold levels.

However, widespread planting of Bt corn imposes selection on target insects to develop resistance. Because Bt traits are pesticidal substances produced by plants, the US EPA regulates Bt crops through the Federal Insecticide Fungicide and Rodenticide Act. Recognizing the threat of resistance, the EPA also requires seed companies to include an insect resistance management (IRM) plan when applying to register a Bt trait. The goal of an IRM plan is to delay resistance in target insect pest populations. The IRM plan is implemented by planting refuge corn on each farm or field where Bt corn is planted. Refuge corn does not contain the Bt trait(s) used for the target pests in the Bt corn plants.

Depending on the type of Bt corn, the refuge must be planted to a specific percentage of corn acreage on each farm or each field where Bt corn is planted, and there are configuration and distance requirements to adhere to in placing IRM refuge corn within and among fields. Additionally, many Bt corn hybrids are packaged and sold as “refuge in the bag (RIB)” where non-Bt corn seeds are mixed in with the Bt corn seed at a specific percentage of total seed in the bag and growers do not need to plant a structured refuge (see table 2-11).

The objective of IRM is to maintain Bt susceptible insect populations by way of the refuge. A refuge provides a corn crop habitat that allows target pests to develop without being exposed to the Bt trait. Without a refuge, target insect populations exposed to Bt corn each growing season over multiple generations will eventually become resistant to Bt. Mating between Bt-susceptible insects from the refuge and potential resistant insects from Bt corn minimizes the chances of fully resistant target insect pest populations developing in the field.

Bt corn insect traits and refuge requirements

For growers who incorporate Bt corn trait technology into their insect pest management strategy, Bt insect trait decisions are made during the hybrid selection process. Moreover, all Bt corn hybrids are sold with a low rate neonicotinoid insecticide seed treatment for protection against early season soil insect pests. Seed trait and seed treatment are input costs committed to before planting. This requires a good understanding of these inputs to make sure they are a necessary, effective, and economical fit for insect pest populations and history on a given farm and crop rotation.

Table 2-11 provides an overview of the increasing array of Bt corn products available. This includes single Bt trait corn hybrids targeting one insect pest group (corn rootworms or corn borers), ‘stacked’ Bt trait hybrids (e.g., single trait targeting corn rootworms and at least one additional trait targeting aboveground corn borers), and ‘pyramided’ trait hybrids, with two or more Bt proteins targeting the same insect pest group.

Summary

For structured refuges (planted as blocks or strips within fields), the
refuge corn should have a relative maturity that is compatible with the Bt corn. Plant the refuge at the same time as the Bt corn and plant it in an area with the same crop rotation history. The non-Bt rootworm refuge may be treated with soil applied or seed-applied insecticides labeled for corn rootworm at planting. The non-Bt corn borer refuge may be treated with conventional foliar insecticides (but not Bt insecticide) only if target pest pressure reaches economic thresholds. It will not be practical to spray the non-Bt corn in a strip configuration within a field.

Crop rotation sequence, insect field scouting records, state pest survey data, and historical insect problems on your farm will help guide your decision when selecting corn hybrids with Bt traits.

When selecting corn hybrids, keep in mind that Bt insect protection is only one of many factors that should go into the decision. Evaluate the cost of added protection with Bt traits and decide if the cost is justified for your situation. Just because you can buy a trait doesn’t mean you need that trait. Data from the University of Wisconsin Department of Agronomy corn hybrid yield trials can help you choose the best hybrid for your location. This information is updated annually and is available through your county Extension office or at corn.agronomy.wisc.edu

__Resistance by western corn rootworm to Bt corn__

Field-evolved resistance has not been detected for the European corn borer, even though this insect has been exposed to Bt proteins common in US corn hybrids since 1996. However, despite the requirement that growers plant a refuge to delay resistance development, field-evolved resistance by western corn rootworm occurred in a relatively short period of time since commercial release of the first Bt rootworm corn in 2003. Resistance has been confirmed in Iowa, Minnesota and Illinois, and is suspected in other populations of western corn rootworms in the US Corn Belt and parts of Wisconsin. In addition to planting the required refuge, the following recommendations can help corn growers to delay further resistance and conserve western corn rootworm susceptibility to Bt corn:

- **Scout for rootworm beetles.** Beetle populations can vary from year to year and field to field. Counting beetles during the egg-laying period can determine if there is a need for control in next year’s corn and may help choosing the most appropriate control method to avoid resistance. For more information on rootworm beetle scouting go to http://ipcm.wisc.edu/download/pubsPM/Corn-rootworm-card-2015hx.pdf

- **Evaluate corn roots for signs of larval feeding.** Doing so may provide an early warning for resistance on continuous corn and presence/absence of rotation resistance western corn rootworm on first-year corn. For more information on rating damaged corn roots go to http://ipcm.wisc.edu/download/pubsPM/Corn-rootRate-card2015hx.pdf

- **Rotate to soybean or another non-host crop** to break the corn rootworm life cycle.

- **Consider the use of an at-plant, soil applied insecticide** labeled for corn rootworm control with a conventional, non-Bt CRW hybrid.

- **Rotate Bt CRW toxins.** Do not use the same Bt toxin for more than two consecutive years whether it is a single, stacked or pyramided trait. Annual rotation is preferred.

- **Adult suppression may be an appropriate remediation step** for one or two growing seasons in fields with confirmed resistance, if crop rotation is not an option or a suitable Bt pyramid is not available. In such cases, soil insecticide applied to non-Bt corn will offer root protection while adulticides will reduce the number of resistant adults that survive in the field. This should be followed by a long-term IPM approach using a mix of tactics.

 - **Most importantly, implement a long-term integrated approach to corn rootworm management,** based on scouting information and knowledge of corn rootworm densities, that uses multiple tactics such as rotation to a non-host crop, rotation of Bt toxins, and the use of soil insecticides at planting with a non-Bt hybrid.
Table 2-11. Handy Bt trait table
Chris DiFonzo, Michigan State University. April 2016
http://www.msuent.com/assets/pdf/28BtTraitTable2016.pdf

<table>
<thead>
<tr>
<th>Trait group/Name</th>
<th>Bt proteins</th>
<th>Aboveground</th>
<th>In soil</th>
<th>Herbicide tolerance</th>
<th>Refuge %, field placement in the Midwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrisure Trait Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrisure CB/LL</td>
<td>Cry1Ab</td>
<td>ECB</td>
<td>—</td>
<td>LL</td>
<td>20% within .5 mile</td>
</tr>
<tr>
<td>Agrisure GT/LL</td>
<td>Cry1Ab</td>
<td>ECB</td>
<td>—</td>
<td>GT, LL</td>
<td>20% within .5 mile</td>
</tr>
<tr>
<td>Agrisure RW</td>
<td>mCry3A</td>
<td>—</td>
<td>CRW</td>
<td>—</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure GT/RW</td>
<td>mCry3A</td>
<td>—</td>
<td>CRW</td>
<td>GT</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure CB/LL/RW</td>
<td>Cry1Ab, mCry3A</td>
<td>ECB</td>
<td>CRW</td>
<td>LL</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure 3000GT</td>
<td>Cry1Ab, mCry3A</td>
<td>ECB</td>
<td>CRW</td>
<td>GT, LL</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure Artesian 3011A</td>
<td>Cry1Ab, mCry3A</td>
<td>ECB</td>
<td>CRW</td>
<td>GT, LL</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure Viptera 3110</td>
<td>Cry1Ab, Vip3A</td>
<td>BCW, CEW, ECB, FAW, SB</td>
<td>—</td>
<td>GT, LL</td>
<td>20% within .5 mile</td>
</tr>
<tr>
<td>Agrisure Viptera 3111</td>
<td>Cry1Ab, mCry3A, Vip3A</td>
<td>BCW, CEW, ECB, FAW, SB</td>
<td>CRW</td>
<td>GT, LL</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Agrisure 3122</td>
<td>Cry1Ab, Cry1F, mCry3A, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>GT</td>
<td>5% in the bag</td>
</tr>
<tr>
<td>Agrisure Viptera 3220</td>
<td>Cry1Ab, Cry1F, Vip3A</td>
<td>BCW, CEW, ECB, FAW, SB</td>
<td>—</td>
<td>GT</td>
<td>5% in the bag</td>
</tr>
<tr>
<td>Agrisure Duracadde 5122</td>
<td>Cry1Ab, Cry1F, mCry3A, eCry3.1Ab</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>GT</td>
<td>5% in the bag</td>
</tr>
<tr>
<td>Agrisure Duracadde 5222</td>
<td>Cry1Ab, Cry1F, Vip3A, mCry3A, eCry3.1Ab</td>
<td>BCW, CEW, ECB, FAW, SB</td>
<td>CRW</td>
<td>GT</td>
<td>5% in the bag</td>
</tr>
<tr>
<td>Herculex Trait Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herculex I</td>
<td>Cry1F</td>
<td>BCW, ECB, FAW, WBC</td>
<td>—</td>
<td>LL, RR2 (most)</td>
<td>20% within .5 mile</td>
</tr>
<tr>
<td>Herculex RW</td>
<td>Cry34/35Ab1</td>
<td>—</td>
<td>CRW</td>
<td>LL, RR2 (most)</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Herculex XTRA</td>
<td>Cry1F, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL, RR2 (most)</td>
<td>20% in field, adjacent</td>
</tr>
</tbody>
</table>

Abbreviations: Insects: BCW = black cutworm; CEW = corn earworm; CRW = corn rootworm; ECB = European corn borer; FAW = fall armyworm; SB = stalk borer; WBC = western bean cutworm; Herbicide traits: GT = glyphosate tolerant; LL = Liberty Link/glufosinate tolerant; RR2 = Roundup Readyglyphosate tolerant

Continued on next page
Table 2-11. Handy Bt trait table (continued)

<table>
<thead>
<tr>
<th>Trait group/Name</th>
<th>Bt proteins</th>
<th>Aboveground</th>
<th>In soil</th>
<th>Herbicide tolerance</th>
<th>Refuge %, field placement in the Midwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum Trait Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum AcreMax</td>
<td>Cry1F, Cry1Ab</td>
<td>BCW, ECB, FAW, WBC</td>
<td>—</td>
<td>RR2</td>
<td>5% in the bag</td>
</tr>
<tr>
<td>Optimum AcreMax 1</td>
<td>Cry1F, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>10% in the bag (CRW) & 20% within .5 mile (ECB)</td>
</tr>
<tr>
<td>Optimum AcreMax RW</td>
<td>Cry34/35Ab1</td>
<td>—</td>
<td>CRW</td>
<td>LL</td>
<td>10% in the bag</td>
</tr>
<tr>
<td>Optimum AcreMax TRIsect</td>
<td>Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>10% in the bag</td>
</tr>
<tr>
<td>Optimum AcreMax Xtra</td>
<td>Cry1F, Cry1Ab, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>10% in the bag</td>
</tr>
<tr>
<td>Optimum AcreMax Xtreme</td>
<td>Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>10% in the bag</td>
</tr>
<tr>
<td>Optimum Intrasect</td>
<td>Cry1F, Cry1Ab</td>
<td>BCW, ECB, FAW, WBC</td>
<td>—</td>
<td>LL</td>
<td>5% within .5 mile</td>
</tr>
<tr>
<td>Optimum Intrasect Xtra</td>
<td>Cry1F, Cry1Ab, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td>Optimum Intrasect Xtreme</td>
<td>Cry1F, Cry1Ab, mCry3A, Cry34/35Ab1</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>5% in field, adjacent</td>
</tr>
<tr>
<td>Optimum TRIsect</td>
<td>Cry1F, mCry3A</td>
<td>BCW, ECB, FAW, WBC</td>
<td>CRW</td>
<td>LL</td>
<td>20% in field, adjacent</td>
</tr>
</tbody>
</table>

Abbreviations: Insects: BCW = black cutworm; CEW = corn earworm; CRW = corn rootworm; ECB = European corn borer; FAW = fall armyworm; SB = stalk borer; WBC = western bean cutworm; Herbicide traits: GT = glyphosate tolerant; LL = Liberty Link/glufosinate tolerant; RR2 = Roundup Readyglyphosate tolerant

Continued on next page
Table 2-11. Handy Bt trait table (continued)

<table>
<thead>
<tr>
<th>Trait group/Name</th>
<th>Bt proteins</th>
<th>Aboveground</th>
<th>In soil</th>
<th>Herbicide tolerance</th>
<th>Refuge %, field placement in the Midwest</th>
</tr>
</thead>
<tbody>
<tr>
<td>YieldGard/Genuity Trait Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YieldGard VT Triple</td>
<td>Cry1Ab</td>
<td>ECB</td>
<td>CRW</td>
<td>RR2</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td>CEW, FAW, SB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity VT Double Pro</td>
<td>Cry1A.105</td>
<td>CEW, ECB, FAW</td>
<td></td>
<td>RR2</td>
<td>20% within .5 mile</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity VT Triple Pro</td>
<td>Cry1A.105</td>
<td>CEW, ECB, FAW</td>
<td>CRW</td>
<td>RR2</td>
<td>20% in field, adjacent</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity SmartStax</td>
<td>Cry1A.105</td>
<td>BCW, CEW, ECB, FAW</td>
<td>CRW</td>
<td>LL</td>
<td>5% in field, adjacent</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry1F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry34/35Ab1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity VT Double PRO RIB Complete (GENVT2P)</td>
<td>Cry1A.105</td>
<td>CEW, ECB, FAW</td>
<td></td>
<td>RR2</td>
<td>5% in the bag</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity VT Triple PRO RIB Complete (GENVT3P)</td>
<td>Cry1A.105</td>
<td>CEW, ECB, FAW</td>
<td>CRW</td>
<td>RR2</td>
<td>10% in the bag</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genuity SmartStax RIB Complete</td>
<td>Cry1A.105</td>
<td>BCW, CEW, ECB, FAW</td>
<td>CRW</td>
<td>LL</td>
<td>5% in the bag</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry1F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry34/35Ab1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuge Advanced Trait Family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuge Advanced Powered by SmartStax</td>
<td>Cry1A.105</td>
<td>BCW, CEW, ECB, FAW</td>
<td>CRW</td>
<td>LL</td>
<td>5% in the bag</td>
</tr>
<tr>
<td></td>
<td>Cry2Ab2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry1F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry3Bb1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cry34/35Ab1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Insects: BCW = black cutworm; CEW = corn earworm; CRW = corn rootworm; ECB = European corn borer; FAW = fall armyworm; SB = stalk borer; WBC = western bean cutworm; Herbicide traits: GT = glyphosate tolerant; LL = Liberty Link/glufosinate tolerant; RR2 = Roundup Ready/glyphosate tolerant
Insecticide suggestions for corn pests

Armyworm

Treatment is suggested if larvae are 0.75-1.0 inch long or less and two or more larvae per plant can be found on 25% of corn plants or if one larva per plant is found on 75% of corn plants.

Ambush Insecticide

- **Rate:** 6.4-12.8 fl oz
- **Active ingredient:** permethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain and stover; forage may be harvested on date of application.
- **Maximum rate:** 0.6 lb ai/a/season

Asana XL

- **Rate:** 5.8-9.6 fl oz
- **Active ingredient:** esfenvalerate
- **IRAC code:** 3A
- **Preharvest interval (days):** 21
- **Maximum rate:** 0.25 lb ai/a/season

Bacillus thuringiensis

- **Rate:** See label (rates vary by formulation).
- **Active ingredient:** Bacillus thuringiensis
- **IRAC code:** 11
- **Maximum rate:** several formulations available. Consult label.

Apply while larvae are small.

Baythroid XL

- **Rate:** 1.6-2.8 fl oz
- **Active ingredient:** beta-cyfluthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 21 for grain or fodder, 0 for green forage
- **Maximum rate:** 11.2 fl oz/a (0.0088 lb ai/a) per season

Labeled for 1st and 2nd instar larvae.

Besiege

- **Rate:** 6.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Brigade 2EC

- **Rate:** 2.1-6.4 fl oz
- **Active ingredient:** bifenthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
- **Maximum rate:** 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Belt 4SC

- **Rate:** 2.0-3.0 fl oz
- **Active ingredient:** flubendiamide
- **IRAC code:** 28
- **Preharvest interval (days):** 28 for grain or stover, 1 for green forage and silage
- **Maximum rate:** 12.0 fl oz/a (0.375 lb ai/a)/season

Borrego SC

- **Rate:** 3.2-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain, 60 for forage
- **Maximum rate:** 11.4 fl oz/a/season

Apply to early instar larvae.

Besiege

- **Rate:** 6.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Use higher rates for large larvae.

Delta Gold 1.5EC

- **Rate:** 1.5-1.9 fl oz
- **Active ingredient:** deltamethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 21 for grain or fodder; Do not apply within 12 days of cutting or gathering field corn for forage.
- **Maximum rate:** 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.

Apply to early instar larvae.

Fanfare EC and ES

- **Rate:** 2.1-6.4 fl oz/a
- **Active ingredient:** bifenthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
- **Maximum rate:** Do not apply more than 0.3 lb active ingredient (19.2 oz formulated)/a/season

Fastac EC

- **Rate:** 3.2-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain, 60 for forage
- **Maximum rate:** 11.4 fl oz/a/season

Fastac SC

- **Rate:** 3.2-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain and stover, 60 for forage
- **Maximum rate:** 11.4 fl oz/a/season

Hero

- **Rate:** 4.0-10.3 fl oz
- **Active ingredient:** zeta-cypermethrin, bifenthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
- **Maximum rate:** 10.3 oz or 0.10 lb ai/application. Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applica-
Principles of pest management

Stored grain insects

- **Mustang Maxx**
 - **Rate:** 3.2-4.0 fl oz
 - **Active ingredient:** zeta-cypermethrin
 - **IRAC code:** 3A
 - **Preharvest interval (days):** 7 for grain stover and forage
 - **Maximum rate:** 17.2 oz/a or 0.20 lb ai/a/season

- **Paradigm**
 - **Rate:** 2.56-3.84 fl oz/a
 - **Active ingredient:** lambda-cyhalothrin
 - **IRAC code:** 3A
 - **Preharvest interval (days):** 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
 - **Maximum rate:** Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Lightning herbicides.

- **Stallion**
 - **Rate:** 9.25-11.75 fl oz
 - **Active ingredient:** zeta-cypermethrin, chlorpyrifos
 - **IRAC code:** 3A, 1B
 - **Preharvest interval (days):** 30 for grain, 60 for forage
 - **Maximum rate:** 35.25 oz/a/season (see label)
 - Do not apply in tank mixes with Steadfast or Lightning herbicides.

Spinosad

- **Tracer**
 - **Rate:** 1.0-3.0 fl oz
 - **Active ingredient:** spinosad
 - **IRAC code:** 5
 - **Preharvest interval (days):** 28 for grain, 3 for forage or fodder
 - **Maximum rate:** 6 fl oz/a (0.188 lb ai/a)/year

Chlorpyrifos

- **Vulcan**
 - **Rate:** 1-2 pts/a
 - **Active ingredient:** chlorpyrifos
 - **IRAC code:** 1B
 - **Preharvest interval (days):** 21 for grain, ear, forage or fodder.
 - **Maximum rate:** Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Carbaryl

- **Warrior II**
 - **Rate:** 1.28-1.92 fl oz
 - **Active ingredient:** lambda-cyhalothrin
 - **IRAC code:** 3A
 - **Preharvest interval (days):** 21
 - **Maximum rate:** 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a/crop from at plant and foliar applications; 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a

Appendix

Perennial weeds

- **Lannate LV**
 - **Rate:** 0.75-1.5 pt
 - **Active ingredient:** methoxyfenozide
 - **IRAC code:** 1A
 - **Preharvest interval (days):** 21 for ears and stover, 3 for forage
 - **Maximum rate:** 7.5 pt/a/crop
 - High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

- **Lannate SP**
 - **Rate:** 0.25-0.50 lb
 - **Active ingredient:** methomyl
 - **IRAC code:** 1A
 - **Preharvest interval (days):** 21 for ears and stover, 3 for forage
 - **Maximum rate:** 2.5 lb/a/crop
 - High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

- **Lorsban Advanced**
 - **Rate:** 1.0-2.0 pt
 - **Active ingredient:** chlorpyrifos
 - **IRAC code:** 1B
 - **Preharvest interval (days):** 21 for grain, ears, forage or fodder
 - **Maximum rate:** 3 lb ai/a (6.38 pt /a)/season
 - Do not apply in tank mixes with Steadfast or Lightning herbicides.

- **Mustang**
 - **Rate:** 1.4-3.0 fl oz
 - **Active ingredient:** zeta-cypermethrin
 - **IRAC code:** 3A
 - **Preharvest interval (days):** 7 for grain, stover and forage
 - **Maximum rate:** 16 oz/a or 0.10 lb ai/a/season

Forages & pastures

- **Prevathon**
 - **Rate:** 14.0 - 20.0 fl oz./a
 - **Active ingredient:** chlorantraniliprole
 - **IRAC code:** 28
 - **Preharvest interval (days):** 14 for ears, 1 for forage, fodder, silage, stover
 - **Maximum rate:** 60 fl oz of chlorantraniliprole-containing products/season, 4 applications/year

- **Sevin XLR Plus**
 - **Rate:** 1.0-2.0 qt
 - **Active ingredient:** carbaryl
 - **IRAC code:** 1A
 - **Preharvest interval (days):** 48 for grain and fodder, 14 for harvest or grazing of forage or silage
 - **Maximum rate:** 8 qt/a/crop/year
 - *Bee Precaution: Do not apply this product to target crops or weeds in bloom.*

- **Silencer**
 - **Rate:** 2.56-3.84 fl oz/a
 - **Active ingredient:** lambda-cyhalothrin
 - **IRAC code:** 3A
 - **Preharvest interval (days):** 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
 - **Maximum rate:** Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).
Small grains
Forages & pastures
Soybean
Corn insects
Principles of pest management
Appendix

(1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.

Use higher rates for large larvae.

Billbug

No thresholds established. Control is warranted when adult feeding damage is killing plants and reducing stands. There is no rescue treatment for larvae feeding inside corn stalks.

Cobalt Advanced

Rate: 32.0-42.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milking stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. Ground-apply in a minimum spray volume of 20-40 gpa at 40 psi. If corn is less than 6 inches tall, apply in a 9- to 12-inch-wide band over the row. For corn greater than 6 inches tall, apply using drop nozzles directed to the base of the plant.

Counter 20G

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor- net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4-to 5-in band or in-furrow.

Counter 20G SmartBox

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor- net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4-to 5-in band or in-furrow.

Cruiser 5 FS

Rate: 1.25 mg/seed
Active ingredient: thiamethoxam
IRAC code: 4A
Do not use treated seed for feed, food or oil purposes.
Bees Precaution: Thiamethoxam is highly toxic to bees, and effects are possible as a result of exposure to translocated residues in blooming crops.

Lorsban Advanced

Rate: 2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21
Maximum rate: 3 lb ai/a (6.38 pt/a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides. For best control, ground-apply in a minimum spray volume of 20-40 gpa at 40 psi.

Vulcan

Rate: 2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21
Maximum rate: Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt/a Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Corn earworm

Control occasionally required in hybrid seed production fields. Treat before brown silk stage.

Ambush 2EC

Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season
Apply just before silking and continue as necessary to maintain control.

Asana XL

Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season
First application should be at or before silking. Repeat applications if economically damaging
populations exist. Subsequent applications until silking is completed.

Baythroid XL
- **Rate:** 1.6-2.8 fl oz
- **Active ingredient:** beta-cyfluthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 21 for grain or stover, 0 for green forage
- **Maximum rate:** 11.2 fl oz/a (0.0088 lb ai/a)/season

Belt 4SC
- **Rate:** 2.0-3.0 fl oz
- **Active ingredient:** flubendiamide
- **IRAC code:** 28
- **Preharvest interval (days):** 28 for grain or stover, 1 for green forage and silage
- **Maximum rate:** 12.0 fl oz/a (0.375 lb ai/a)/season

Besiège
- **Rate:** 5.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiège or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Besiege
- **Rate:** 5.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiège or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Besiège
- **Rate:** 5.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiège or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Besiège
- **Rate:** 5.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin + chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate:** Total of 31.0 fl oz of Besiège or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Bradex 2EC
- **Rate:** 2.1-6.4 fl oz
- **Active ingredient:** bifenthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
- **Maximum rate:** 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced
- **Rate:** 16.0-38.0 fl oz
- **Active ingredient:** chlorpyrifos + lambda-cyhalothrin
- **IRAC code:** 1B, 3A
- **Preharvest interval (days):** 21
- **Maximum rate:** 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Coragen 1.67SC
- **Rate:** 3.5-5.0 fl oz
- **Active ingredient:** chlorantraniliprole
- **IRAC code:** 28
- **Preharvest interval (days):** 14
- **Maximum rate:** 15.4 fl oz Coragen or 0.2 lb ai of chlorantraniliprole containing products/a/crop. Do not make more than 4 applications/a/crop.

Declare 1.25CS
- **Rate:** 0.77-1.28 fl oz
- **Active ingredient:** gamma-cyhalothrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 21
- **Maximum rate:** 0.06 lb ai/a (0.38 pt/a)/crop containing products/a/crop. Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.

Delta Gold 1.5EC
- **Rate:** 1.5-1.9 fl oz
- **Active ingredient:** deltamethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 21 for grain or stover, 1 for green forage and silage
- **Maximum rate:** 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.
- **Apply to early instar larvae prior to boring into the ear.**

Fastac EC
- **Rate:** 1.3-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain, 60 for forage
- **Maximum rate:** 11.4 fl oz/a/season

Fastac SC
- **Rate:** 1.8-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain and stover, 60 for forage
- **Maximum rate:** 11.4 fl oz/a/season

Hero
- **Rate:** 4.0-10.3 fl oz
- **Active ingredient:** zeta-cypermethrin, bifenthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
- **Maximum rate:** 10.3 oz or 0.10 lb ai/applic-ation. Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Lannate LV
- **Rate:** 0.75-1.5 pt
- **Active ingredient:** methomyl
- **IRAC code:** 1A
- **Preharvest interval (days):** 21 for ears and stover, 3 for forage
- **Maximum rate:** 7.5 pt/a/crop

Lannate SP
- **Rate:** 0.25-0.50 lb
- **Active ingredient:** methomyl
- **IRAC code:** 1A
- **Preharvest interval (days):** 21 for ears and stover, 3 for forage
Maximum rate: 2.5 lb/a/crop
High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lorsban Advanced
Rate: 1.5–2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage or fodder
Maximum rate: 3 lb ai/a (6.38 pt /a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Mustang
Rate: 1.9–4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season
For control before the larvae bore into the ear.

Mustang Maxx
Rate: 1.76–4.0 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Paradigm
Rate: 1.92–3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a) from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Silencer
Rate: 1.92–3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a) from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion
Rate: 9.25–11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.
For control before the larvae bore into the ear.

Tracer
Rate: 2.0–3.0 fl oz
Active ingredient: spinosad
IRAC code: S
Preharvest interval (days): 28 for grain, 3 for forage or fodder
Maximum rate: 6 fl oz/a (0.188 lb ai/a)/year

Vulcan
Rate: 2 pts/a
Active ingredient: chlorpyrifos

Sevin XLR Plus
Rate: 1.0–2.0 qt
Active ingredient: carbaryl
IRAC code: 1A
Preharvest interval (days): 48 for grain and fodder, 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year
Bee Precaution: Do not apply this product to target crops or weeds in bloom.

Silencer
Rate: 1.92–3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a) from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion
Rate: 9.25–11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.
For control before the larvae bore into the ear.

Tracer
Rate: 2.0–3.0 fl oz
Active ingredient: spinosad
IRAC code: S
Preharvest interval (days): 28 for grain, 3 for forage or fodder
Maximum rate: 6 fl oz/a (0.188 lb ai/a)/year

Vulcan
Rate: 2 pts/a
Active ingredient: chlorpyrifos

IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder
Maximum rate: Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Corn leaf aphid
Treat if 50% of corn plants have more than 50 aphids per plant and plants are in the late whorl to early tassel stage.

Asana XL
Rate: 5.8–9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season
For optimum results, direct the spray at the aphid population so as to achieve maximum coverage of the exposed insects. Aphids not contacted by the spray, such as in whorls and leaf axils, may not be adequately controlled.

Avicta Complete Corn
Rate: 0.534 mg/seed
Active ingredient: thiamethoxam, abamectin
IRAC code: 4A, 6
Maximum rate: 0.534 mg/seed

Besiege
Rate: 5.0–10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Suppression only.
Brigade 2EC

Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced

Rate: 11.0-26.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Delta Gold 1.5EC

Rate: 1.5-1.9 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder. Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.
Suppression only.

Dimethoate

Rate: 2/3 – 1 pt.
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): 28 for grain, 14 for forage
Maximum rate: Maximum application rate 0.5 lb ai/a

*Beep precaution: Do not apply to corn during pollen shed period if bees are present. Workers are prohibited from entering treated area to perform detasselling tasks for 4 days in non-arid areas and for 15 days in outdoor areas where average rainfall is less than 25 inches/year. Do not apply in tank-mixes with ALS herbicides.

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb active ingredient (19.2 oz formulated)/a/season.

Fastac EC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero

Rate: 4.0-10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application. Do not apply more than 41.2 oz or 0.4 lb ai/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn.
**Use of ultra low volume (ULV) application on corn is prohibited.

Lannate LV

Rate: 0.75-1.5 pt
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb active ingredient (19.2 oz formulated)/a/season.

Fastac SC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero

Rate: 4.0-10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application. Do not apply more than 41.2 oz or 0.4 lb ai/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn.
**Use of ultra low volume (ULV) application on corn is prohibited.

Lannate LV

Rate: 0.75-1.5 pt
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage

Maximum rate:** 7.5 pt/a/crop
**High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lannate SP

Rate: 0.25-0.50 lb
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for grain, ears and stover, 3 for forage
Maximum rate: 2.5 lb/a/crop
**High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lorsban Advanced

Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a (6.38 pt/a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Mustang

Rate: 2.9-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season

Paradigm

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).
Silencer
Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 or forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.
Aphid control may be variable depending on species present and host-plant relationships.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder
Maximum rate: Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Corn rootworm beetle
For pollination protection. Treat before pollination is 50% complete, silk clipping is observed, and five or more beetles are observed/plant.

Ambush 2EC
Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season
Apply at first sign of silk feeding.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage.
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season

Besiege
Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A

Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced
Rate: 11.0-26.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cybalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a) crop from at plant and foliar applications. Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.

Delta Gold 1.5EC
Rate: 1.5-1.9 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or forage; Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.

Dimethoate
Rate: 2/3 – 1 pt.
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): 28 for grain, 14 for forage
Maximum rate: Maximum application
Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application
Maximum rate: Do not apply more than 0.3 lb ai (19.2 oz formulated)/a/season

Fastac EC
Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC
Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero
Rate: 4.0-10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application; Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Lannate LV
Rate: 0.75-1.5 pt
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage
Maximum rate: 7.5 pt/a/crop
High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lannate SP
Rate: 0.25-0.50 lb
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage
Maximum rate: 2.5 lb/a/crop
High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a (6.38 pt/a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides.
The specified dosage will control silk clipping by corn rootworm adults.

Mustang Maxx
Rate: 2.72-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Mustang
Rate: 2.9-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season

Paradigm
Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Sevin XLR Plus
Rate: 1.0-2.0 qt
Active ingredient: carbaryl
IRAC code: 1A
Preharvest interval (days): 48 for grain and fodder, 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year
Bee Precaution: Do not apply this product to target crops or weeds in bloom.

Silencer
Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.
Vulcan
Rate: 1–2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder
Maximum rate: Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Warrior II
Rate: 1.28–1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt ai)/crop from at plant and foliar applications; Apply 0.06 lb ai/a (3.84 fl oz or 0.24 pt ai) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt ai) after corn has reached the milk stage.

Corn rootworm larvae
You will need to use a rootworm control tactic or rotate to a crop other than corn if you found an average of 0.75 beetles per plant during the previous corn crop year sample in the same field.

Avicta Complete Corn
Rate: 0.534 mg/seed
Active ingredient: thiamethoxam, abamectin
IRAC code: 4A, 6
Maximum rate: 0.534 mg/seed

Aztec 2.1G
Rate: 6.7 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 7.3 lb ai/a/season (30-inch rows)

Aztec 4.67G
Rate: 3.0 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 3.27 lb ai/a/season (30-inch rows) Must be applied with the SmartBox system.

Aztec HC
Rate: 1.5 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 1.63 lb ai/a/season (30-inch rows) Must be applied with the SmartBox system.

Bifenture LFC
Rate: 0.39–0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): Maximum rate: 0.20 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Apply as a 5- to 7-in band (T-band) over an open furrow or in-furrow with the seed.

Brigade 2EC
Rate: 0.3 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not make aerial or ground applications to corn if heavy rainfall is imminent. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited. Apply as a 5- to 7-in band treatment over an open seed furrow. Do not apply more than 0.10 lb ai/a at planting.

Capture 1.5 LFR
Rate: 0.39–0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): Maximum rate: 0.1 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products (such as Brigade 2EC). Do not apply to soil where there is greater than 30% cover of crop residue remaining. Apply as a 5- to 7-in band (T-band) over an open seed furrow or in-furrow with the seed.

Capture 3RIVE 3D
Rate: 0.46–0.92 fl oz/1000 row ft
Active ingredient: bifenthrin
IRAC code: 3A
Placement: In-Furrow Comments: Apply only with Capture 3Rive 3D application equipment in furrow with seed.
Maximum Rate: Do not apply more than 0.2 lb ai/a as an at-plant application. Do not apply more than 0.3 lb ai/a including PPI, at-plant, preemergence and foliar applications of bifenthrin products

Counter 15G Lock’n Load
Rate: 6.0–8.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 8.7 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor-net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Counter 15G SmartBox
Rate: 6.0–8.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 8.7 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor-net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Counter 20G
Rate: 6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor-net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Counter 20G SmartBox
Rate: 6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor- net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Cruiser 5 FS
Rate: 1.25 mg/seed
Active ingredient: thiamethoxam
IRAC code: 4A
Do not use treated seed for feed, food or oil purposes.

Ethos XB
Rate: 0.39-0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3
Preharvest interval (days): none listed
Maximum rate: Do not apply more than 0.3 lb bifenthrin active per acre per seas as an at-plant application. Rates less than the equivalent of 8.0 fl oz/a at 30: row spacing may not provide adequate control of corn rootworm.

Force 3G
Rate: 4.0-5.0 oz/1,000 ft row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: 10.9 oz/1,000 ft row per year
Do not apply unless you can incorporate the granules as directed on label. Do not follow an at-planting application with a lay-by application.
Banded: Place granules in a 7-in band directly behind the planter shoe in front of or behind the press wheel.
In-furrow: Place granules directly in the seed furrow behind the planter shoe.

Force CS
Rate: 0.46-0.57 fl oz/1000 ft of row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: Make only one application of Force CS/year, and do not exceed 20 fl oz /a

Lorsban 15G
Rate: 8.0 oz/1,000 ft row
Active ingredient: chlorpyrifos

Poncho 600
Rate: 1.25 mg clothianidin per seed
Active ingredient: clothianidin
IRAC code: 4A
Maximum rate: 1.25 mg/seed
Do not use treated seed for food, feed, or oil processing. This compound is toxic to birds and mammals. Treated seeds exposed on soil surface may be hazardous to birds and mammals. Cover or collect treated seeds spilled during loading.

SmartChoice 5G
Rate: 3.0-5.0 oz/1,000 ft row
Active ingredient: chlorethoxyfos, bifenthrin
IRAC code: 1B, 3A
Preharvest interval (days): 5.0 oz/1,000 ft row
Precaution: Toxic to wild mammals, birds, fish, and aquatic invertebrates. Do not apply directly to water or to areas where surface water is present.

Sniper LFR
Rate: 0.39-0.49 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 0.10 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products. Do not apply to soil where there is greater than 30% cover of crop residue remaining.
Maximum rate: Apply as a 5- to 7-in band (T-band) over an open furrow or in-furrow with the seed.

Cutworm
Treat when 2-5% of plants show cutting activity.

Ambush 2EC
Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season

Asana XL
Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season
Apply at 3.2-9.6 fl oz/a for the control of black cutworm at planting of corn. Applications for cutworm control may be applied before, during, or after planting as required to protect emerging or emerged corn seedlings.

Avicta Complete Corn
Rate: 0.534 mg/seed
Active ingredient: thiamethoxam, abamectin
IRAC code: 4A, 6
Maximum rate: 0.534 mg/seed

Aztec 2.1G
Rate: 6.7 oz/1,000 ft row
Active ingredient: tebufentinphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 7.3 lb ai/a/season (30-inch rows)
For control of cutworm apply as a band or T-band.

Aztec 4.67G
Rate: 3.0 oz/1,000 ft row
Active ingredient: tebufentinphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 3.27 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system. Optimum control of cutworm when applied as a band or T-band.

Aztec HC
Rate: 1.5 oz/1,000 ft row
Active ingredient: tebufentinphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 1.63 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system. Optimum control of cutworm when applied as a band or T-band.

Baythroid XL
Rate: 0.8-1.6 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season
Belt 4SC
Rate: 2.0-3.0 fl oz
Active ingredient: flubendiamide
IRAC code: 28
Preharvest interval (days): 28 for grain or stover, 1 for forage and silage
Maximum rate: 12.0 fl oz/a (0.375 lb ai/a)/season

Besiege
Rate: 5.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/crop season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced
Rate: 11.0-26.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. Apply when soil is moist and cutworms are active on or near the soil surface. Effectiveness will be reduced if ground is dry, cloddy, or crusted at time of application. Shallow incorporation immediately before or soon after treatment may improve control.

Cruiser 5 FS
Rate: 0.25-0.80 mg /seed
Active ingredient: thiamethoxam
IRAC code: 4A
Maximum rate: 0.25-0.80 mg/seed
Precautions: Do not use treated seed for feed, food or oil purposes.
Bee precaution: Highly toxic to bees, and effects are possible as a result of exposure to translocated residues in blooming crops.

Declare 1.25CS
Rate: 0.77-1.28 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a)/crop from at plant and foliar applications. Do not apply more than 0.05 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.069 pt) after milk stage.

Delta Gold 1.5EC
Rate: 1.0-1.5 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder; Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb active ingredient (19.2 oz formulated)/a/season.

Fastac EC
Rate: 1.3-2.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC
Rate: 1.3-2.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Force 3G
Rate: 4.0-5.0 oz/1,000 ft row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: 10.9 oz/1,000 ft row per year
Do not apply unless you can incorporate the granules as directed on label. Do not follow an at-planting application with a lay-by-application.
Banded: Place granules in a 7-in band directly behind the planter shoe in front of or behind the press wheel.
In-furrow: Place granules directly in the seed furrow behind the planter shoe.

Force CS
Rate: 0.46 – 0.57 fl oz/1000 ft of row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: Make only one application of Force CS/year, and do not exceed 20 fl oz/a.

Hero
Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Maximum rate: 75 oz or 0.1 lb ai/acre. Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a (6.38 pt/a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides. Preferably apply when soil is moist and cutworms are active on or near the soil surface. If ground is dry, cloddy, or crusted at time of treatment, worms may be protected from the spray and effectiveness is reduced.

Mustang
Rate: 1.4-3.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season

Mustang Maxx
Rate: 1.28-2.8 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Paradigm
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt/a) after soil initiation. Do not apply more than 0.03 lb ai (0.24 pt/a) after corn has reached the milk stage (yellow kernel with milk fluid).

Poncho 600
Rate: 0.25-0.50 mg/seed
Active ingredient: clothianidin
IRAC code: 4A
Maximum rate: 0.25-0.50 mg/seed
Do not use treated seed for food, feed, or oil processing. This compound is toxic to birds and mammals. Treated seeds exposed on soil surface may be hazardous to birds and mammals. Cover or collect treated seeds spilled during loading.

Sevin XLR Plus
Rate: 2.0 qt
Active ingredient: carbaryl
IRAC code: 1A
Preharvest interval (days): 48 for grain and fodder; 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year
For best control on cutworm, apply in a 12-in band, over the row, using sufficient volume of water to obtain thorough coverage.
Bee precaution: Do not apply this product to target crops or weeds in bloom.

Silencer
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt/a) after soil initiation. Do not apply more than 0.03 lb ai (0.24 pt/a) after corn has reached the milk stage (yellow kernel with milk fluid).

SmartChoice 5G
Rate: 4.5-5.0 oz/1,000 ft row
Active ingredient: chlorothrin, bifenthrin
IRAC code: 1B, 3A
Preharvest interval (days): Maximum rate: 5.0 oz/1,000 ft row
Toxic to wild mammals, birds, fish, and aquatic invertebrates. Do not apply directly to water or to areas where surface water is present.

Stallion
Rate: 3.7-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder.
Maximum rate: Do not apply more than 3 lb ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Warrior II
Rate: 0.96-1.6 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a)/crop from at-plant and foliar applications; Apply 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.

European corn borer

Ambush 2EC
Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season
Application must be made before larvae bore into plant.

Asana XL
Rate: 7.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season
First generation: Spray while eggs are in the blackhead stage or before the larvae enter the whorl.
Second generation: Make applications when
sufficient egg masses are found and eggs are in the blackhead stage or starting to hatch.

Bacillus thuringiensis (several)

Rate: see label (rates vary by formulation)
Active ingredient: Bacillus thuringiensis
IRAC code: 11
Preharvest interval (days): 0
Maximum rate: Several formulations available (see label)
Apply while larvae are small.

Baythroid XL

Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season
Application must be made prior to the larvae boring into the plant.

Belt 4SC

Rate: 2.0-3.0 fl oz
Active ingredient: flubendiamide
IRAC code: 28
Preharvest interval (days): 28 for grain or stover, 1 for green forage and silage
Maximum rate: 12.0 fl oz/a (0.375 lb ai/a)/season

Besiege

Rate: 6.0-9.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Brigade 2EC

Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced

Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. Use 22-38 fl oz/a when application is made with power-operated ground or aerial equipment or 16-38 fl oz/a when application is made through a sprinkler irrigation system.

Coragen 1.67SC

Rate: 3.5-5.0 fl oz
Active ingredient: chlorantraniliprole
IRAC code: 28
Preharvest interval (days): 14
Maximum rate: 15.4 fl oz Coragen or 0.2 lb ai of chlorantraniliprole containing products/a/crop. Do not make more than 4 applications/a/crop.

** Declare 1.25CS**

Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a) per crop from at plant and foliar applications. Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.
For control before larvae bore into stalk or ear.

Delta Gold 1.5EC

Rate: 1.5-1.9 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder. Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.
Apply to early instar larvae prior to boring into stalk or ear.

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application
Maximum rate: Do not apply more than 0.3 lb active ingredient (19.2 oz formulated)/a/season.

Fastac EC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero

Rate: 4.0-10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage. Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application. Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.
Intrepid 2F
Rate: 4.0-16.0 fl oz
Active ingredient: methoxfenozide
IRAC code: 1B
Preharvest interval (days): 21 for grain
Maximum rate: 16 fl oz/a/application or more than a total of 64 fl oz/a (1 lb ai/a)/year

Do not apply in tank mixes with Steadfast or Lightning herbicides.

University research indicates that achieving greater than 50% control of first-generation European corn borer with a single liquid insecticide treatment is highly dependent upon timing, insecticide placement, and weather conditions.

Lannate LV
Rate: 0.75-1.5 pt
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage
Maximum rate: 7.5 pt/a/crop

High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lannate SP
Rate: 0.25-0.50 lb
Active ingredient: methomyl
IRAC code: 1A
Preharvest interval (days): 21 for ears and stover, 3 for forage
Maximum rate: 2.5 lb/a/crop

High acute toxicity to humans. Highly toxic to bees exposed to direct treatment on blooming crops or weeds. Do not apply or allow it to drift to blooming crops or weeds while bees are visiting the treatment area.

Lorsban 15G
Rate: 3.5-8.0 oz
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a/season

Apply in a band over the row so that granules are directed into the whorl. Use 3.5-4.0 oz/1,000 ft row for low first-generation infestation, 6.0-8.0 oz/1,000 ft row for second generation infestations.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a (6.38 pt./a)/season

Preharvest interval (days): 48 for grain and fodder, 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year
For best results on European corn borer, do not apply in less than 3 gal of water/a by air and 15 gal of water/a by ground.

Bee precaution: Do not apply this product to target crops or weeds in bloom.

Mustang Maxx
Rate: 2.72-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season

Paradigm
Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Preharvest interval (days): Do not apply more than 0.12 lb ai (0.96 pt) per acre to forage from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silking. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.
For control before the larvae bore into the plant stalk or ear.

Tracer
Rate: 1.0-3.0 fl oz
Active ingredient: spinosad
IRAC code: 5
Preharvest interval (days): 28 for grain, 3 for forage or fodder
Maximum rate: 6 fl oz/a (0.188 lb ai/a)/year

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder
Maximum rate: Do not apply more than 3 lbs
Bifenthrin: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 2.1-6.4 fl oz/a

Zeta-cypermethrin: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 6.1 fl oz/a

Dimethoate: 1.0-1.5 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 1.0-1.5 fl oz/a

Delta Gold 1.5EC: 1.0-1.5 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 1.0-1.5 fl oz/a

Warrior II: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 1.28-1.92 fl oz/a

Cobalt Advanced: 6.0-13.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 12.9 fl oz/a of Cobalt Advanced

Dimethoate: See label (rate varies by formulation)
Preharvest interval (days): 28
Maximum rate: 0.5 lb ai/a/application.

Asana XL: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season; For first and second instar stages, 3.9-5.8 fl oz/a can be used.

Baythroid XL: 2.1-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 2.1-2.8 fl oz/a (0.0088 lb ai/a/season)

Cobalt Advanced: 6.0-13.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 12.9 fl oz/a of Cobalt Advanced

Declare 1.25CS: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 1.02-1.54 fl oz/a

Fastac EC: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 1.0-1.5 fl oz/a

Fastac SC: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 1.0-1.5 fl oz/a

This document provides information on the use of various pesticides, including their active ingredients, rates, and application intervals, along with instructions for pre- and post-harvest management. It covers a range of pests, from stored grain and small grains to corn insects and forages. The text includes specific application rates and intervals, designed for both field corn and forages, ensuring optimal control while minimizing environmental impact.
Lorsban Advanced

- **Rate**: 0.5-1.0 pt
- **Active ingredient**: chlorpyrifos
- **IRAC code**: 1B
- **Preharvest interval (days)**: 21 for grain, ears, forage, or fodder
- **Maximum rate**: 3 lb ai/a (6.38 pt/a) for stover

Mustang

- **Rate**: 2.0-4.3 fl oz
- **Active ingredient**: zeta-cypermethrin
- **IRAC code**: 3A
- **Preharvest interval (days)**: 7 for grain, stover and forage
- **Maximum rate**: 17.2 oz/a or 0.20 lb ai/a/season

Mustang Maxx

- **Rate**: 2.72-4.0 fl oz
- **Active ingredient**: zeta-cypermethrin
- **IRAC code**: 3A
- **Preharvest interval (days)**: 7 for grain, stover and forage
- **Maximum rate**: 16 oz/a or 0.10 lb ai/a/season

Paradigm

- **Rate**: 2.56-3.84 fl oz/a
- **Active ingredient**: lambda-cyhalothrin
- **IRAC code**: 1B
- **Preharvest interval (days)**: 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate**: Do not apply more than 0.12 lb ai (0.96 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Prevathon

- **Rate**: 8.0 - 20.0 fl oz/a
- **Active ingredient**: chlorantraniliprole
- **IRAC code**: 28
- **Preharvest interval (days)**: 14 for ears, 1 for forage, fodder, silage, stover
- **Maximum rate**: Do not apply more than 0.12 lb ai (0.96 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Silencer

- **Rate**: 2.56-3.84 fl oz/a
- **Active ingredient**: lambda-cyhalothrin
- **IRAC code**: 3A
- **Preharvest interval (days)**: 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate**: Do not apply more than 0.12 lb ai (0.96 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion

- **Rate**: 9.25-11.75 fl oz
- **Active ingredient**: zeta-cypermethrin, chlorpyrifos
- **IRAC code**: 3A, 1B
- **Preharvest interval (days)**: 30 for grain, 60 for forage
- **Maximum rate**: 35.25 oz/a/season (see label)

Vulcan

- **Rate**: 0.5-1.0 pts/a
- **Active ingredient**: lambda-cyhalothrin + chlorantraniliprole
- **IRAC code**: 3A
- **Preharvest interval (days)**: 21 for grain, ear, forage, or fodder
- **Maximum rate**: Do not apply more than 3 lb ai (18.0 fl oz/a) after silk initiation or 0.12 lb ai (10.0 fl oz/a) after corn has reached the milk stage.

Warrior II

- **Rate**: 1.28-1.92 fl oz
- **Active ingredient**: lambda-cyhalothrin
- **IRAC code**: 3A
- **Preharvest interval (days)**: 21
- **Maximum rate**: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a)/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.

Hop vine borer

Where yearly infestations occur along fence rows, waterways, or field margins, apply at plant emergence.

Ambush 2EC

- **Rate**: 6.4-12.8 fl oz
- **Active ingredient**: permethrin
- **IRAC code**: 3A
- **Preharvest interval (days)**: 30 for grain and stover; forage may be harvested on date of application
- **Maximum rate**: 0.6 lb ai/a/season

Besiege

- **Rate**: 6.0-10.0 fl oz
- **Active ingredient**: lambda-cyhalothrin + chlorantraniliprole
- **IRAC code**: 3A, 28
- **Preharvest interval (days)**: 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
- **Maximum rate**: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Cobalt Advanced

- **Rate**: 16.0-38.0 fl oz
- **Active ingredient**: chlorpyrifos + lambda-cyhalothrin
- **IRAC code**: 18, 3A
- **Preharvest interval (days)**: 21
- **Maximum rate**: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)
lambda-cyhalothrin/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) is allowed/season, for a total of 2.12 lb ai/a/chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Declare 1.25CS

Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a) per crop from at plant and foliar applications; Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage. For control before larvae bore into stalk.

Fastac EC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero

Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application; Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Mustang

Rate: 2.9-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/season

Mustang Maxx

Rate: 2.72-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/season

Paradigm

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Silencer

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals with 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion

Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos

IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Warrior II

Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a/crop from at plant and foliar applications; Apply 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.
For control before the larvae bore into the plant stalk.

Japanese beetle (adult)

Consider a foliar insecticide treatment during tasseling and silking if there are three or more beetles per ear and silk clipping is occurring to within 0.5 inch.

Asana XL

Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season

Baythroid XL

Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage.
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season

Besiege

Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 for grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy
animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/a/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.

Brigade 2EC

Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced

Rate: 32.0-42.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin) per season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a) per season is allowed, for a total of 2.12 fl lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Declare 1.25CS

Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyalthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a)/crop from at-plant and foliar applications; Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.

Delta Gold 1.5EC

Rate: 1.5-1.9 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder; Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb ai (19.2 oz formulated)/a/season.

Fastac EC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC

Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero

Rate: 4.0-10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Mustang Maxx

Rate: 2.72-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Paradigm

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Sevin XLR Plus

Rate: 1.0-2.0 qt
Active ingredient: carbaryl
IRAC code: 1A
Preharvest interval (days): 48 for grain and fodder, 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year
Bee Precaution: Do not apply this product to target crops or weeds in bloom.

Silencer

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).
Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Warrior II
Rate: 1.2-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a)/crop from at plant and foliar applications; Apply 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.

Seedcorn maggot

Avicta Complete Corn
Rate: 0.534 mg/seed
Active ingredient: thiamethoxam, abamectin
IRAC code: 4A, 6
Maximum rate: 0.534 mg/seed

Aztec 2.1G
Rate: 6.7 oz/1,000 ft row
Active ingredient: tebuvidimorphos, cyfluthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 7.3 lb ai/a/season (30-inch rows)
Apply as a T-band or in-furrow.

Aztec 4.67G
Rate: 3.0 oz/1,000 ft row
Active ingredient: tebuvidimorphos, cyfluthrin
IRAC code: 3A
Maximum rate: 3.27 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system. Optimum control is achieved when applied as a T-band or in-furrow.

Aztec HC
Rate: 1.5 oz/1,000 ft row
Active ingredient: tebuvidimorphos, cyfluthrin
IRAC code: 3A
Maximum rate: 1.63 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system.

Baythroid XL
Rate: 0.12-0.16 fl oz/1,000 ft row
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season

Bifenture LFC
Rate: 0.39-0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 0.20 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Apply as a 5- to 7-in band (T-band) over an open furrow or in-furrow with the seed.

Brigade 2EC
Rate: 0.15-0.30 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited. In-furrow placement at planting for corn rootworm larvae, seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Capture 1.5 LFR
Rate: 0.2-0.78 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Maximum rate: 0.1 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products (such as Brigade 2EC). Do not apply to soil where there is >30% cover of crop residue remaining. Apply as a 5- to 7-in band (T-band) over an open furrow or in-furrow with the seed.

Capture 3RIVE 3D
Rate: 0.23-0.92 fl oz/1000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Maximum Rate: Do not apply more than 0.2 lb ai/a as an at-plant application. Do not apply more than 0.3 lb ai/a including PPI, at-plant, preemergence, and foliar applications of bifenthrin products.
In-Furrow: Apply only with Capture 3Rive 3D application equipment in furrow with seed.

Cobalt Advanced
Rate: 2.87 fl oz/1,000 ft row
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a)/season is allowed, for a total of 2.12 lb ai/a chlorpyrifos per season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. In-furrow placement at planting for seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Counter 15G Lock’n Load
Rate: 6.0-8.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment.
Maximum rate: 8.7 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor-net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Counter 15G SmartBox
Rate: 6.0-8.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment.
Maximum rate: 8.7 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Horn-net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.
Counter 20G

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULDN’T be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Horizon, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Counter 20G SmartBox

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULDN’T be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Horizon, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Cruiser 5 FS

Rate: 0.25-0.80 mg/seed
Active ingredient: thiamethoxam
IRAC code: 4A
Maximum rate: 0.25-0.80 mg/seed

Precaution: Do not use treated seed for feed, food or oil purposes.

Bee precaution: Thiamethoxam is highly toxic to bees, and effects are possible as a result of exposure to translocated residues in blooming crops.

Ethos XB

Rate: 0.2-0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3

Preharvest interval (days): none listed

Maximum rate: Do not apply more than 0.3 lb bifenthrin active per acre per season as an at-plant application. Rates less than the equivalent of 8.0 fl oz/a at 30:30 row spacing may not provide adequate control of corn rootworm.

Force 3G

Rate: 4.0-5.0 oz/1,000 ft row
Active ingredient: tefluthrin
IRAC code: 3A

Force CS

Rate: 0.46 – 0.57 fl oz/1000 ft of row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: Make only one applications of Force CS/year, and do not exceed 20 fl oz/a.

Kernel Guard Supreme

Rate: See label for rates.
Active ingredient: permethrin
IRAC code: 3A
Maximum rate: see label

Lorsban 15G

Rate: 8.0 oz/1,000 ft row
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, stover; forage may be harvested on date of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Horizon, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Force 2G

Rate: 4.5-5.0 oz/1,000 ft row
Active ingredient: chlorothalonil, bifenthrin
IRAC code: 1B, 3A
Preharvest interval (days): 30 for corn and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season

IronFist

Rate: 10-40 lbs/a
Active ingredient: Sodium Ferric EDTA
IRAC code: n/a
Maximum rate: 40 lbs/a

Poncho 600

Rate: 0.25-0.50 mg/seed
Active ingredient: clothianidin
IRAC code: 4A
Maximum rate: 0.25-0.50 mg/seed

Do not use treated seed for food, feed, or oil purposes.

Stalk borer

When 1,300-1,400 degree days have accumulated, scout corn to verify that stalk borers are moving from grass to corn by looking for larvae inside the whorls. If an insecticide is needed, treat at 1,400-1,700 degree days.

Ambush 2EC

Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain and stover; forage may be harvested on date of application
Maximum rate: 0.6 lb ai/a/season

Insecticide must be applied when or shortly before larvae are moving into the corn from surrounding weeds and grasses. Mowing or burnedown herbicide is suggested to initiate movement.
Asana XL
Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.25 lb ai/a/season
Application must be made early in migration from grassy areas to corn, before borers enter the plant.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season
Application must be made prior to the larvae boring into the plant.

Belt 4SC
Rate: 2.0-3.0 fl oz
Active ingredient: flubendiamide
IRAC code: 2B
Preharvest interval (days): 28 for grain or stover, 1 for green forage and silage.
Maximum rate: 12.0 fl oz/a (0.375 lb ai/a)/season

Besiege
Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21 grain; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products ai/year. Do not apply more than 18.0 fl oz/a after milk stage.
For control before the larvae bore into the plant stalk.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Cobalt Advanced
Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a)/season is allowed, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides.
Do not use in combination with a burndown herbicide. For control, treat approximately 11 days after application of glyphosate or after burndown with parathion herbicide is complete (3-5 days).

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a/crop from at-plant and foliar applications. Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.
For control before larvae bore into the plant stalk.

Delta Gold 1.5EC
Rate: 1.5-1.9 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder; Do not apply within 12 days of cutting or grazing field corn for forage.
Maximum rate: 8.1 fl oz/a (0.095 lb ai/a) on field corn in one growing season. Do not make more than 5 applications/a/season.
Apply to early instar larvae prior to boring into the stalk.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb ai (19.2 oz formulated)/a/season.

Fastac EC
Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Fastac SC
Rate: 2.7-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 11.4 fl oz/a/season

Hero
Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application. Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Lorsban Advanced
Rate: 2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a (6.38 pt/a)/season
Do not apply in tank mixes with Steadfast or Lightning herbicides. Do not use in combination with a burndown herbicide for control. Treat approximately 11 days after application of
glyphosate or after burnround with parathion herbicide is complete (3-5 days).

Mustang

Rate: 2.9-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 17.2 oz/a or 0.20 lb ai/a/season

Mustang Maxx

Rate: 2.72-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 7 for grain, stover and forage
Maximum rate: 16 oz/a or 0.10 lb ai/a/season

Paradigm

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Silencer

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Silencer

Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Stallion

Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 30 for grain, 60 for forage
Maximum rate: 35.25 oz/a/season (see label)
Do not apply in tank mixes with Steadfast or Lightning herbicides.

Vulcan

Rate: 2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ear, forage, or fodder
Maximum rate: Do not apply more than 3 lbs ai chlorpyrifos (6.4 pt of Vulcan)/a/season. Do not make more than 3 applications/season of any product containing chlorpyrifos including the maximum allow of 2 granular applications at the 1 lbs ai chlorpyrifos rate. Do not make a second application of Vulcan or other product containing chlorpyrifos within 10 days of the first application. Do not apply in tank mixes with Steadfast or Lightning herbicides.

Warrior II

Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a) after silk initiation. Do not apply more than 0.03 lb ai (0.19 fl oz or 0.12 pt/a) after corn has reached the milk stage.
For control before the larvae bore into the plant stalk.

Two-spotted spider mite

Control is suggested when the lower 1/4 to 1/3 of the canopy is injured (live mites and stippled leaf damage) , and corn has not dented. Effects on corn yield are more severe when mites damage leaves at or above the ear level.

Brigade 2EC

Rate: 5.12-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is >30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited.

Comite

Rate: 32-48 fl oz/a
Active ingredient: Propargite
IRAC code: 12C
Preharvest interval (days): 30
Maximum rate: Do not make more than one application/season; Restricted Entry Interval is 13 days.

Dimethoate (several)

Rate: See label (rate varies by formulation).
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): 28 for grain, 14 for forage
Maximum rate: 0.5 lb ai/a/season; Do not apply more than 0.5 lb ai/a/year. There are many different dimethoate formulations (see label).
*Workers are prohibited from entering the treated area to perform detasseling tasks for 4 days in nonarid areas and for 15 days in outdoor areas where the average annual rainfall is less than 25 inches/year.

Fanfare EC and ES

Rate: 5.12-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb ai (19.2 oz formulated)/a/season.

Hero

Rate: 10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.10 lb ai/application; Do not apply more than 41.2 oz or 0.4 lb ai/a/ season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of
ultra low volume (ULV) application on corn is prohibited.

Oberon 2SC
Rate: 5.7-16.0 fl oz
Active ingredient: spiromesifen
IRAC code: 23
Preharvest interval (days): 30 for grain or stover, 5 for green forage and silage
Maximum rate: 0.25 lb ai/a/season
Apply before larvae enter the ear.

Oberon 4SC
Rate: 2.85-8.0 fl oz
Active ingredient: spiromesifen
IRAC code: 23
Preharvest interval (days): 30 for grain or stover, 5 for green forage and silage
Maximum rate: 0.6 lb ai/a/season
Application
stover; forage may be harvested on date of
30 for grain and
Preharvest interval (days):
IRAC code: 3A
Active ingredient: esfenvalerate
Rate: 2.9-5.8 fl oz
Apply before larvae enter the ear.

Zea 288 SC
Rate: 2.6 fl oz/a
Active ingredient: Extoxazole
IRAC code: 10B
Preharvest interval (days): 21
Maximum rate: maximum of 2 applications/season; Do not apply more than 0.27 lb ai/a per calendar year, do not apply treatments less than 14 days apart.

Zeal 288 SC
Rate: 5.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21
Maximum rate: Total of 31.0 fl oz of Zeal or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/ai/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.
For control before the larva bores into the ear.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season
Apply before larvae enter the ear.

Belt 4SC
Rate: 2.0-3.0 fl oz
Active ingredient: flubendiamide
IRAC code: 28
Preharvest interval (days): 28 for grain or stover, 1 for green forage and silage
Maximum rate: 12.0 fl oz/a (0.375 lb ai/a)/season

Besiege
Rate: 5.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin + chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 21
Maximum rate: Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after last treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Total of 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin containing products or 0.2 lb ai of chlorantraniliprole containing products/ai/year. Do not apply more than 18.0 fl oz/a after silk initiation or 10.0 fl oz/a after milk stage.
For control before the larva bores into the ear.

Declare 1.25CS
Rate: 0.77-1.28 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.06 lb ai/a (0.38 pt/a)/crop from at plant and foliar applications. Do not apply more than 0.03 lb ai (0.19 pt) after silk initiation or more than 0.015 lb ai (0.096 pt) after milk stage.
For control before larvae bore into the ear.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: Do not apply more than 0.3 lb ai (19.2 oz formulated)/a/season.

Fastac EC
Rate: 1.8-3.8 fl oz
Active ingredient: alphacypermethrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 11.4 fl oz/a/season

Fastac SC
Rate: 2.7-3.8 fl oz
Active ingredient: alphacypermethrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 11.4 fl oz/a/season
Hero

Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30 for grain, 60 for forage; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of the last application.
Maximum rate: 10.3 oz or 0.1 lb ai/application; Do not apply more than 41.2 oz or 0.4 lb ai/a/season including at-plant and foliar applications. Refer to the maximum usage tables when applying more than one product containing either zeta-cypermethrin or bifenthrin to corn. Use of ultra low volume (ULV) application on corn is prohibited.

Paradigm

Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21; Do not allow livestock to graze in treated areas or harvest treated corn forage as feed for meat or dairy animals within 1 day after treatment. Do not feed treated corn fodder or silage to meat or dairy animals within 21 days after last treatment.
Maximum rate: Do not apply more than 0.12 lb ai (0.96 pt)/a/crop from at-plant and foliar applications. Do not apply more than 0.06 lb ai (0.48 pt) after silk initiation. Do not apply more than 0.03 lb ai (0.24 pt) after corn has reached the milk stage (yellow kernel with milk fluid).

Prevathon

Rate: 14.0 - 20.0 fl oz./a
Active ingredient: chlorantraniliprole
IRAC code: 28
Preharvest interval (days): 14 for ears, 1 for forage, fodder, silage, stover
Maximum rate: 60 fl oz of chlorantraniliprole-containing products/season, 4 applications/year

Sevin XLR Plus

Rate: 2.0 qt
Active ingredient: carbaryl
IRAC code: 1A
Preharvest interval (days): 48 for forage and fodder, 14 for harvest or grazing of forage or silage
Maximum rate: 8 qt/a/crop/year

Warrior II

Rate: 0.96-1.6 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a/crop from at-plant and foliar applications; Apply 0.06 lb ai/a (3.84 fl oz or 0.24 pt/a) after silk initiation. Do not apply more than 0.03 lb ai/a (1.92 fl oz or 0.12 pt/a) after corn has reached the milk stage.
For control before the larva bores into the ear.

Aztec 2.1G

Rate: 6.7 oz/1,000 ft row
Active ingredient: tebupirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 7.3 lb ai/a/season (30-inch rows). Apply as a T-band or in-furrow.

Aztec 4.67G

Rate: 3.0 oz/1,000 ft row
Active ingredient: tebupirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 3.27 lb ai/a/season (30-inch rows) Must be applied with the SmartBox system.
Small grains

Principles of pest

Forages &

Optimum control of is achieved when applied as a T-band or in-furrow.

Aztec HC

Rate: 1.5 oz/1000 ft row
Active ingredient: tepuirimphos, cyfluthrin
IRAC code: 1A, 3A
Preharvest interval (days): 21
Maximum rate: 1.63 lb ai/a/season (30-inch rows) Must be applied with the SmartBox system.

Baythroid XL

Rate: 0.14-0.16 fl oz/1,000 ft row
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season

Brigade 2EC

Rate: 0.15-0.30 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications.
Do not apply to soil where there is greater than 30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited. In-furrow placement at planting for corn root worm larvae, seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Capture 1.5 LFR

Rate: 0.2-0.78 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Maximum rate: 0.1 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin products (such as Brigade 2EC). Do not apply to soil where there is >30% cover of crop residue remaining.

Capture 3RIVE 3D

Rate: 0.23-0.92 fl oz/1000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Maximum Rate: Do not apply more than 0.2 lb ai/a as an at-plant application. Do not apply more than 0.3 lb ai/a including PPI, at-plant, preemergence and foliar applications of bifenthrin products.
In-Furrow: Apply only with Capture 3Rive 3D application equipment in furrow with seed.

Cobalt Advanced

Rate: 2.87 fl oz/1,000 ft row
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a chlorpyrifos and 0.13 lb ai/a lambda-cyhalothrin)/season. If more than 1 lb ai/a granular chlorpyrifos is applied at-plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a)/season is allowed, for a total of 2.12 lb ai/a chlorpyrifos/season. Do not apply more than 79 fl oz after silk initiation or more than 39.5 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. In-furrow placement at planting for seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Counter 20G

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment.
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hor- net, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Cruiser 5 FS

Rate: 0.25-0.80 mg/seed
Active ingredient: thiamethoxam
IRAC code: 4A
Preharvest interval (days): Maximum rate: 0.25-0.80 mg/seed
Bee precaution: Thiamethoxam is highly toxic to bees, and effects are possible as a result of exposure to translocated residues in blooming crops.

Ethos XB

Rate: 0.2-0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3
Maximum rate: Do not apply more than 0.3 lb bifenthrin active per acre per seas as an at-plant application. Rates lower than the equivalent of 8.0 fl oz/a at 30: row spacing may not provide adequate control of corn rootworm.

Force 3G

Rate: 4.0-5.0 oz/1,000 ft row
Active ingredient: bifluthrin
IRAC code: 3A
Maximum rate: 10.9 oz/1,000 ft row per year; Do not apply unless you can incorporate the granules as directed on label. Do not follow an at-planting application with a lay-by application.
Banded: Place granules in a 7-in band directly behind the planter shoe in front of or behind the planter shoe in rear of the planter.

See Appendix for Forages & Pastures, Soybean, Corn, Insects, Small Grains, Perennial Weeds, Stored Grain, Appendix.
press wheel.

In-furrow: Place granules directly in the seed furrow behind the planter shoe.

Force CS

Rate: 0.46-0.57 fl oz/1000 ft row
Active ingredient: tebufloxzin
IRAC code: 3A
Maximum rate: Make only one application of Force CS/year, and do not exceed 20 fl oz/a.

Lorsban 15G

Rate: 8.0 oz/1,000 ft row
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a/season
Apply at planting as a T-band or in-furrow application.

Poncho 600

Rate: 0.25-0.50 mg/seed
Active ingredient: clothianidin
IRAC code: 4A
Maximum rate: 0.25-0.50 mg/seed
Do not use treated seed for food, feed, or oil processing. This compound is toxic to birds and mammals. Treated seeds exposed on soil surface may be hazardous to birds and mammals. Cover or collect treated seeds spilled during loading.

SmartChoice 5G

Rate: 4.5-5.0 oz/1,000 ft row
Active ingredient: chlorothalonil, bifenthrin
IRAC code: 1B, 3A
Maximum rate: 5.0 oz/1,000 ft row
Toxic to wild mammals, birds, fish, and aquatic invertebrates. Do not apply directly to water or to areas where surface water is present.

Wireworm

Avicta Complete Corn

Rate: 0.534 mg/seed
Active ingredient: thiamethoxam, abamectin
IRAC code: 4A, 6
Maximum rate: 0.534 mg/seed

Aztec 2.1G

Rate: 6.7 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 7.3 lb ai/a/season (30-inch rows)
Apply as a T-band or in-furrow.

Aztec 4.67G

Rate: 3.0 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 3.27 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system. Optimum control of wireworms achieved when applied as a T-band or in-furrow.

Aztec HC

Rate: 1.5 oz/1,000 ft row
Active ingredient: tebuirimphos, cyfluthrin
IRAC code: 1A, 3A
Maximum rate: 1.63 lb ai/a/season (30-inch rows)
Must be applied with the SmartBox system.

Baythroid XL

Rate: 0.12-0.16 fl oz/1,000 ft row
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain or fodder, 0 for green forage
Maximum rate: 11.2 fl oz/a (0.0088 lb ai/a)/season

Brigade 2EC

Rate: 0.15-0.30 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze livestock in treated areas or cut treated crops for feed within 30 days of last application.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is greater than 30% cover of crop residue remaining.
Maximum rate: 0.3 lb ai/a/season including PRE and PPI, at plant, plus foliar applications. Do not apply to soil where there is greater than 30% cover of crop residue remaining. Use of ultra low volume (ULV) application on corn is prohibited. In-furrow placement at planting for corn rootworm larvae, seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Capture 1.5 LFR

Rate: 0.2-0.78 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3A
Maximum rate: 0.1 lb ai/a/season as an at-plant application; 0.3 lb ai/a/season including at-plant plus foliar applications of other bifenthrin produces (such as Brigade 2EC). Do not apply to soil where there is >30% cover of crop residue remaining. Apply as a 5- to 7-inch band (T-band) over an open furrow, or in-furrow with the seed.

Capture 3RIVE 3D

Rate: 0.23-0.92 fl oz/1000 row ft.
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): Do not apply more than 0.2 lb ai/a as an at-plant application. Do not apply more than 0.3 lb ai/a including PPI, at-plant, preemergence and foliar applications of bifenthrin products.
In-Furrow: Apply only with Capture 3Rive 3D application equipment in furrow with seed.

Cobalt Advanced

Rate: 2.87 fl oz/1,000 ft row
Active ingredient: chlorpyrifos + lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 21
Maximum rate: 129 fl oz/a of Cobalt Advanced (2.5 lb ai/a of chlorpyrifos and 0.13 lb ai/a of lambda-cyhalothrin)/season. If more than 1 lb ai/a of granular chlorpyrifos is applied to plant (for a maximum of 1.3 lb ai/a/season), only one application of Cobalt Advanced at 42 fl oz/a (0.82 lb ai/a/season) is allowed, for a total of 2.12 lb ai/a of chlorpyrifos/season. Do not apply more than 79 fl oz after milk stage. Do not apply in tank mixes with Steadfast or Lightning herbicides. In-furrow placement at planting for corn rootworm larvae, seedcorn beetle, seedcorn maggot, white grub, and wireworm; foliar for all other labeled insects.

Counter 20G

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbicides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Horten, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-inch band or in-furrow.

Counter 20G SmartBox

Rate: 4.5-6.0 oz/1,000 ft row
Active ingredient: terbufos
IRAC code: 1B
Preharvest interval (days): DO NOT graze or cut for forage within 30 days of treatment
Maximum rate: 6.5 lb/a; ALS-inhibiting herbi-
cides SHOULD NOT be used if applied to corn at the time of planting. (This includes Accent, Accent Gold, Basis Gold, Steadfast, Beacon, Exceed, Hornet, Permit, Scorpion III, Celebrity Plus, Lightning, Northstar, and Spirit herbicides). Apply as 4- to 5-in band or in-furrow.

Cruiser 5 FS

Rate: 0.25-0.80 mg/seed
Active ingredient: thiamethoxam
IRAC code: 4A
Maximum rate: 0.25-0.80 mg/seed

Bee precaution: Thiamethoxam is highly toxic to bees, and effects are possible as a result of exposure to translocated residues in blooming crops.

Ethos XB

Rate: 0.2-0.98 fl oz/1,000 ft row
Active ingredient: bifenthrin
IRAC code: 3

Preharvest interval (days): none listed
Maximum rate: Do not apply more than 0.3 lb bifenthrin active per acre per season as an at-plant application. Rates less than the equivalent of 8.0 fl oz/a at 30:1 row spacing may not provide adequate control of corn rootworm.

Force 3G

Rate: 4.0-5.0 oz/1,000 ft row
Active ingredient: tefluthrin
IRAC code: 3A
Maximum rate: 10.9 oz/1,000 ft row per season; Do not apply unless you can incorporate the granules as directed on label. Do not follow an at-plant application with a lay-by application.
Banded: Place granules in a 7-in band directly behind the planter shoe in front of or behind the press wheel.
In-furrow: Place granules directly in the seed furrow behind the planter shoe.

Force CS

Rate: 0.46 – 0.57 fl oz/1000 ft of row
Active ingredient: tefluthrin
IRAC code: 3A
Preharvest interval (days):
Maximum rate: Make only one application of Force CS/year, and do not exceed 20 fl oz/a.

Kernel Guard Supreme

Rate: See label for rates
Active ingredient: permethrin
IRAC code: 3A
Maximum rate: see label

Treated seed must not be used for or mixed with food or animal feed or processed for oil. Do not graze or feed livestock on treated areas for 6 weeks after planting.

Lorsban 15G

Rate: 8.0 oz/1,000 ft row
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 21 for grain, ears, forage, or fodder
Maximum rate: 3 lb ai/a/season

Apply at planting as a T-band or in-furrow application.

Poncho 600

Rate: 0.25-0.50 mg/seed
Active ingredient: clothianidin
IRAC code: 4A
Maximum rate: 0.25-0.50 mg/seed

Do not use treated seed for food, feed, or oil processing. This compound is toxic to birds and mammals. Treated seeds exposed on soil surface may be hazardous to birds and mammals. Cover or collect treated seeds spilled during loading.

SmartChoice 5G

Rate: 3.0-3.5 oz/1,000 ft row
Active ingredient: chlorethoxyfos, bifenthrin
IRAC code: 1B, 3A
Maximum rate: 3.5 oz/1,000 ft row

Toxic to wild mammals, birds, fish, and aquatic invertebrates. Do not apply directly to water or to areas where surface water is present.
Corn diseases management

Corn diseases, like those of other crops, vary in severity from year to year and from one location or field to another. There are many factors that influence disease development, including environmental conditions, the resistance of the corn hybrid, and the population density of the disease organisms that are present. Thus, it is important for growers to distinguish when poor crop development is due to diseases, and when insect, nutrient deficiencies, soil conditions, herbicide injury, or weather conditions are the problem.

Disease management strategies
Corn diseases can be managed by planting resistant or tolerant corn hybrids, rotating crops, using appropriate cultural practices, and applying pesticides. Although a single control procedure can be effective, a sound disease control program integrates all of these crop management techniques.

Resistant hybrids
Selecting corn hybrids that are resistant or tolerant to major corn diseases is the foundation of any integrated disease control program. Your seed dealer should be a good source of information on specific hybrid reaction to disease. Terms describing hybrid reaction to disease are somewhat confusing. “Disease-resistant hybrids” should be regarded only as a general term that suggests resistance to specific diseases; it cannot be an all-inclusive statement, since no hybrid is resistant to all corn diseases. Also, hybrids are not described as being resistant/tolerant to a specific disease. Rather, leaf health, seedling cold tolerance, root size, and stalk strength are characterized, but each relate to reactions to plant pathogens.

Many hybrids have good resistance to eyespot, Gibberella ear rot, northern corn leaf blight, northern leaf spot, rust, smut, and stalk rot. If you have a history of problems with one or more of these diseases, ask about hybrid reactions to these specific diseases and choose hybrids with the best resistance to that problem disease.

Resistance does not mean immunity or complete freedom from infection or disease development. A resistant hybrid should withstand damage but may show some disease development when conditions favor the disease but not suffer much yield reduction. In other words, there is a gradation among hybrids ranging from susceptible to resistant to highly resistant to disease. Changes in cultural practices, new forms (races) of known pathogens, and new pathogens can result in disease in hybrids that were thought resistant.

Learn to identify the major diseases of corn and evaluate disease reactions of the hybrids you grow. Disease reactions of various hybrids can differ with each farm or locality because of different local weather conditions, tillage operations, soil type, and soil fertility. Consult local hybrid testing trials and data from those trials to assist you in choosing hybrids with the best disease resistance package that also grows and yields well in your location.

Crop rotation and tillage practices
Crop rotation and tillage are effective disease control procedures. In many cases, the fungi that cause corn diseases overwinter in stalks, leaves, and roots. Once this corn debris is thoroughly decayed, many corn pathogens perish or are greatly reduced in numbers. Therefore, crop rotation and tillage programs that allow residue decay in the field before the next corn crop is grown will help reduce diseases, especially leaf, seedling, and stalk diseases.

We support the concept of no-till or minimum tillage for crop production because of its soil-conserving potential. However, growers using no-till or minimum tillage should be alert for an increase in crop pest problems; the potential is greater for disease problems with reduced tillage than with conventional tillage systems. The risk of increased corn disease problems is even higher when reduced tillage is associated with continuous corn planting, the use of susceptible hybrids, and climatic conditions favorable for disease development. Corn hybrids that perform well in conventional tillage systems may decline in performance if grown in no-till systems.

Minimum tillage can affect root rot and stalk rot development in at least two ways: first, the associated pathogens become concentrated in the upper root zone (with conventional plowing they are distributed and thus diluted to a greater depth in the soil), and second, potassium may be less available to plants under a reduced tillage situation. You may need to supplement potassium to prevent a nitrogen-potassium (N:K) imbalance and subsequent stalk-rot problems.

Certain diseases are more prevalent if debris from the previous year’s corn crop is left on the surface during wet seasons. Northern leaf spot, eyespot, and Gibberella ear rot are examples.

If you are considering continuous, reduced tillage, or no-till corn production, we suggest the following...
guidelines to minimize the risk of corn diseases:

- Select corn hybrids with resistance or tolerance to major leaf diseases.
- Select hybrids tolerant to stalk and ear rot.
- Consider chopping stalks in the fall. Many corn pathogens do not survive as well when the debris is close to the soil.
- Examine fields periodically during the growing season to spot any sign of disease development. Early harvest can minimize losses if disease severity is high.
- Consider crop rotation to help curb the buildup of corn pathogens that may be developing.
- Select corn hybrids rated superior for seedling cold tolerance.
- Consider planting corn seed treated with a fungicide.

Seed protectants

Chemicals registered for protecting corn seed against seedling rot include captan, fludioxonil (Maxim), mfenoxam (Apron), pyraclostrobin (Stamina), metalaxyl, and mancozeb (check the labels to be sure chemicals include corn seed treatment), but other fungicides can be applied in the planter box. For a complete list, consult the What’s on Your Seed? publication available at ipcm.wisc.edu/downloads/pest-management.

Treatment is especially beneficial when seed vigor is low and during cold, wet spring weather. Virtually all corn seed on the market today is already treated with a fungicide. Many hybrid seed corn companies have changed from captan to Maxim or Maxim-Apron. Some companies take specific requests so you can tailor seed treatments to field conditions. For example, the use of trifloxystrobin (Trilex) in addition to the Maxim-Apron combination offers good protection if planting in cool, wet soils with a high risk of Pythium seed rot.

Leaf disease control with fungicides

Foliar fungicides (table 2-12) can effectively reduce severity of northern corn leaf blight, northern leaf spot, eyespot, gray leaf spot, and rust. It is rarely economical for commercial corn producers to use fungicides for leaf disease control, unless diseases are active between tasseling through the milk growth stage on susceptible hybrids. However, seed corn producers often need to control these diseases because inbreds can be very susceptible to them.

Should any of these leaf diseases threaten during the period between tasseling and the milk growth stage, treatment may be economical. Early detection is critical; monitor fields of susceptible hybrids/inbreds weekly.

Check the label for specific limitations on the amount of product that can be used per acre per season, the preharvest interval, growth stage limitations, and feeding restrictions. For example, chlorothalonil (Bravo formulations) is registered for Helminthosporium leaf blights (northern corn leaf blight, northern leaf spot, southern leaf blight) and rust on fresh market sweet corn and corn grown for seed. Bravo is not labeled for use on processing sweet corn. Corn treated with Bravo cannot be fed to livestock, ensiled, or used as livestock forage. Label instructions must be followed carefully for effective use.

Consider the following factors before deciding to apply a foliar fungicide:

- The susceptibility of the inbred/hybrid to the disease(s) that threaten it.
- Timing of planting. Late planted corn is often at higher risk of yield-reducing disease epidemics.
- The anticipated time of disease development and severity. Severe leaf disease development usually occurs post tassel. Consequently, wet weather or continued heavy dews signal possible blight problems on fields already showing modest leaf spotting. If the blight already has invaded much of the leaf surface above the ear, the treatment benefits will be minimal.
- Treatment cost versus expected benefit. Each treatment costs about $20 to $30/a for the chemical, wetting agent, and application.

Disease problems

Seed rots and seedling blights

Fungicide seed protectants generally control or minimize seed rot and seedling blights of corn. However, seed rot and seedling blight can be expected if corn is planted in wet and cool soils. Hybrids that have good seedling vigor are generally less susceptible to seed rot and seedling blights. Watch for reduced stands and stunted or dying seedlings. Often infected seedlings may develop into a mature plant, but the same disease organisms can cause root rot and stalk rot later on. Because injury from herbicides, insecticides, starter fertilizers, and soil insects can cause similar symptoms and results, accurate diagnosis is important.

Leaf diseases

Leaf diseases vary in prevalence and severity from year to year and from one locality to another, depending largely on environmental conditions. Humid weather, along with heavy dew, favors the spread and development of leaf diseases caused by fungi. Leaf diseases can be found on corn grown in poor and rich soils; soil fertility does not seem to affect these diseases as much as weather conditions, the genetic makeup of a hybrid, and tillage practices. More leaf disease can be expected when no-till or minimum tillage in continuous cornfields is employed. Growers using overhead irrigation should be more watchful for leaf disease development. Leaf diseases are found...
Table 2-12. Fungicide efficacy for leaf diseases of field corn (hybrid seed production and grain)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Anthracnose</th>
<th>Eyespot</th>
<th>Gray leaf spot</th>
<th>Northern corn leaf blight</th>
<th>Northern corn leaf spot</th>
<th>Physoderma brown spot</th>
<th>Rust</th>
<th>Southern rust</th>
<th>Yellow leaf blight</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AfterShock</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>fluoxastrobin</td>
<td>QoI (11)</td>
<td>2–8 fl oz</td>
<td>30 days; do not apply after R4</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
<tr>
<td>Aproach</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>x</td>
<td>9</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>picoxystrobin</td>
<td>QoI (11)</td>
<td>3–12 fl oz</td>
<td>7 days for grain; 0 days for forage</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
<tr>
<td>Aproach Prima</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>picoxystrobin + cyproconazole</td>
<td>QoI (11) triazole (3)</td>
<td>3.4–6.8 fl oz</td>
<td>30 days for grain and ear, 21 days for silage</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
<tr>
<td>Avaris</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>x</td>
<td>azoxystrobin + propiconazole</td>
<td>triazole (3) QoI (11)</td>
<td>7–14 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
<tr>
<td>Bravo Weather Stik</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>chlorothalonil</td>
<td>chloronitriles (M5)</td>
<td>0.75–2.0 pt</td>
<td>14 days</td>
</tr>
<tr>
<td>Remarks:</td>
<td>Use only on corn grown for seed. Consult the label for disease-specific recommendations and rates. Do not apply more than 12 pt/a per season.</td>
<td></td>
</tr>
<tr>
<td>Bumper 41.8 EC</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2–4 fl oz</td>
<td>30 days for forage, grain, and stover</td>
<td></td>
</tr>
<tr>
<td>Bumper ES</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2–4 fl oz</td>
<td>30 days for forage, grain, and stover</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td>Consult the product label for disease-specific recommendations and rates. Do not apply more than 16 fl oz/a/season. Do not apply more than 8 fl oz/a/season on field corn harvested for forage. Do not apply more than 0.45 lb ai/acropiconazole-containing products or more than 2.0 lb ai/azoxystrobin-containing products/a/season.</td>
<td></td>
</tr>
<tr>
<td>Custodia</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>azoxystrobin + tebuconazole</td>
<td>QoI (11) triazole (3)</td>
<td>9–12.9 fl oz</td>
<td>36 days for grain or fodder; 21 days for forage</td>
</tr>
<tr>
<td>Remarks:</td>
<td>Do not use adjuvants or crop oil after V8 stage or before VT stage. Do not apply more than 51.7 fl oz/a/season. Do not apply more than 0.675 lb ai/tebuconazole-containing products/a/season. Do not apply more than 2.0 lb ai/azoxystrobin-containing products/a/season.</td>
<td></td>
</tr>
<tr>
<td>Dithane F-45</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>mancozeb</td>
<td>dithiocarbamate (M3)</td>
<td>1.2 qt</td>
<td>40 days (both formulations)</td>
</tr>
<tr>
<td>Rainshield</td>
<td></td>
</tr>
<tr>
<td>Dithane M-45</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td>Seasonal use amounts vary according to formulation. Do not feed treated forage to livestock.</td>
<td></td>
</tr>
<tr>
<td>Domark 230 ME</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>6</td>
<td>-</td>
<td>tetraconazole</td>
<td>triazole (3)</td>
<td>4–6 fl oz</td>
<td>Do not apply after R3</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td>Do not apply more than one (1) application per year.</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy ratings: Excellent = 10; very good = 8; good = 6; fair = 4; poor = 2; no control = 0; labeled, no data = x; not labeled = -

<Fungicide group numbers indicate the modes of action; multiple applications of fungicides with the same group number increases the chances for disease resistance.>
Table 2-12. Fungicide efficacy for leaf diseases of field corn (hybrid seed production and grain) (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Antennuce</th>
<th>Anthracnose</th>
<th>Eyespot</th>
<th>Gray leaf spot</th>
<th>Northern corn leaf blight</th>
<th>Northern corn leaf spot</th>
<th>Physoderma brown spot</th>
<th>Rust</th>
<th>Southern rust</th>
<th>Yellow rust</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)*</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equus DF</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>chlorothalonil</td>
<td>chloronitriles (M5)</td>
<td>0.7–1.8 lb</td>
<td>14 days</td>
</tr>
<tr>
<td>Remarks: Use only on corn grown for seed or sweet corn NOT to be processed. Consult the label for disease-specific recommendations and rates.</td>
<td></td>
</tr>
<tr>
<td>Evito 480 SC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>fluoxastrobin</td>
<td>Qol (11)</td>
<td>2.0–5.7 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 11.4 fl oz/a (0.36 lb ai/a) per year. No more than two applications/year. Do not apply after R4.</td>
<td></td>
</tr>
<tr>
<td>Evito T</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>fluoxastrobin</td>
<td>Qol (11)</td>
<td>4–9 fl oz</td>
<td>36 days for grain or fodder</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 18 fl oz/a/year. No more than two applications per year. For sweet corn, up to 36 fl oz per year can be applied, but no more than two sequential applications should be used before switching to another mode of action.</td>
<td></td>
</tr>
<tr>
<td>Fitness</td>
<td>-</td>
<td>10</td>
<td>x</td>
<td>6</td>
<td>-</td>
<td>8</td>
<td>6</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2–4 fl oz</td>
<td>30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks: Do not apply more than 16.0 fl oz/a/season, more than 8 fl oz/a for corn grown for forage, or more than 0.45 lb ai/a propiconazole-containing product/season.</td>
<td></td>
</tr>
<tr>
<td>Fortix</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>fluoxastrobin</td>
<td>Qol (11)</td>
<td>4.0–6.0 fl oz</td>
<td>R4 Growth stage or 80 days</td>
</tr>
<tr>
<td>Preemptor</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>pyraclostrobin</td>
<td>Qol (11)</td>
<td>6–12 fl oz</td>
<td>7 days</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 12 fl oz/a per crop per season. Do not make more than two applications per season. Do not use adjuvants after the V8 growth stage or before the VT growth stage.</td>
<td></td>
</tr>
<tr>
<td>Headline EC</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>pyraclostrobin</td>
<td>Qol (11)</td>
<td>6–12 fl oz</td>
<td>7 days</td>
</tr>
<tr>
<td>Headline SC</td>
<td></td>
</tr>
<tr>
<td>Remarks: Consult the label for disease-specific recommendations and rates. Do not apply more than two applications per season or more than two sequential applications before alternating to a labeled non-Group 11 fungicide. To limit the potential for resistance, do not apply more than 1.18 lb ai pyraclostrobin/a/season. Headline EC is labeled to control Rhizoctonia in corn at the rate of 0.60 fl oz per 1,000 row feet (30-inch rows).</td>
<td></td>
</tr>
<tr>
<td>Headline AMP</td>
<td>x</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>pyraclostrobin</td>
<td>Qol (11)</td>
<td>10–14.4 fl oz</td>
<td>20 days for grain and stover; 7 days for forage and silage</td>
</tr>
<tr>
<td>Remarks: Consult the label for disease-specific recommendations and rates. Do not make more than four applications per season. Do not apply more than 57.6 fl oz/a/season. Do not make more than two sequential applications before alternating to another fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>Manzate Pro-stick</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>manganese</td>
<td>dithiocarbamate (M3)</td>
<td>1.5 lb</td>
<td>40 days for all formulations</td>
</tr>
<tr>
<td>Manzate Flowable</td>
<td></td>
</tr>
<tr>
<td>Manzate Max</td>
<td></td>
<td>ethylene-bis-dithio-carbamate</td>
<td>1.2 qt</td>
<td>0.8–1.2 qt</td>
<td></td>
</tr>
<tr>
<td>Remarks: Do not feed treated forage to livestock. Seasonal use amounts vary according to formulation.</td>
<td></td>
</tr>
<tr>
<td>Onset 3.6L</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4–6 fl oz</td>
<td>21 days for forage; 36 days for grain and fodder</td>
</tr>
<tr>
<td>Remarks: A maximum of 24 fl oz/a may be applied per season.</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy ratings: Excellent = 10; very good = 8; good = 6; fair = 4; poor = 2; no control = 0; labeled, no data = x; not labeled = -

*Fungicide group numbers indicate the modes of action; multiple applications of fungicides with the same group number increases the chances for disease resistance.
Table 2-12. Fungicide efficacy for leaf diseases of field corn (hybrid seed production and grain) (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Anthracnose</th>
<th>Eyespot</th>
<th>Gray leaf spot</th>
<th>Northern corn leaf blight</th>
<th>Physoderma brown spot</th>
<th>Rust</th>
<th>Southern rust</th>
<th>Yellow leaf blight</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penncozeb 75 DF</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>manganese</td>
<td>dithiocarbamate (M3)</td>
<td>1.0–1.5 lb</td>
<td>40 days for all formulations</td>
</tr>
<tr>
<td>Penncozeb 80 WP</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>ethylene-bis-dithio-carbamate</td>
<td>-</td>
<td>0.8–1.2 qt</td>
<td>-</td>
</tr>
<tr>
<td>Penncozeb 4 FL</td>
<td>-</td>
</tr>
</tbody>
</table>

Remarks: Do not apply more than 12 lb ai/a/season.

| Priaxor | x | x | 8 | x | x | 6 | x | - | fluxapyroxad + pyraclostrobin | carboximides (7) Qol (11) | 4–8 fl oz | 21 days |

Remarks: Consult label for disease-specific information. Do not apply more than 16 fl oz/a/season. Do not make more than two consecutive applications of Priaxor before alternating to a labeled fungicide with a different mode of action. No more than two applications/season.

| Proline 480 SC | x | 10 | x | 8 | - | 6 | - | prothioconazole | triazole (3) | - | 5.7 fl oz | 14 days for field corn and field corn seed production; 0 days for forage |

Remarks: Do not apply more than 22.8 fl oz/a per crop.

| Propicure 3.6F | - | 10 | 6 | 6 | x | - | 8 | - | propiconazole | triazole (3) | 2–8 fl oz | 30 days |

Remarks: Do not apply more than 16 fl oz/a or 8 fl oz/a for corn harvested for forage/season.

| PropiMax EC | - | 10 | 6 | 6 | x | - | 8 | 6 | propiconazole | triazole (3) | 2–4 fl oz | 30 days for forage, grain, and stover |

Remarks: Consult the label for disease-specific recommendations and rates. Do not apply more than 16 fl oz/a/season. Do not apply more than 8 fl oz/a/season on field corn harvested for forage.

| Quadris | 6 | 6 | 10 | 6 | x | 10 | 6 | azoxystrobin | Qol (11) | - | 6.0–15.5 fl oz | 7 days |

Remarks: Consult the label for disease-specific recommendations and rates. Do not apply more than 123 fl oz of product/a/season. Do not apply more than 2.0 lb ai/a/season of azoxystrobin-containing products. Do not use adjuvants or other additives after V8 growth stage and prior to the VT growth stage as stress or injury may occur.

| Quilt | x | 10 | 10 | 8 | - | 9 | 8 | azoxystrobin + propiconazole | Qol (11) triazole (3) | 7–14 fl oz | 30 days for forage, grain, or stover |

Remarks: Consult the label for disease-specific recommendations and rates. Apply no more than two applications of Quilt or any other group-11 fungicides per year or 56 fl oz/a/season. Do not apply more than 28 fl oz for field corn harvested for forage. Do not apply more than 0.45 lb ai of propiconazole-containing products/a/season or more than 2.0 lb ai azoxystrobin-containing products/a/season.

| Quilt Xcel | 8 | 9 | 10 | 8 | - | 9 | 8 | azoxystrobin + propiconazole | Qol (11) triazole (3) | 10.5–14 fl oz | 30 days for forage, grain, or stover |

Remarks: Consult the label for disease-specific recommendations and rates. Do not apply more than 56 fl oz/a/season. Do not apply more than 28 fl oz for field corn harvested for forage. Do not apply more than 0.45 lb ai propiconazole-containing products/a/season or more than 2.0 lb ai azoxystrobin-containing products/a/season.

Efficacy ratings: Excellent = 10; very good = 8; good = 6; fair = 4; poor = 2; no control = 0; labeled, no data = x; not labeled = -

Fungicide group numbers indicate the modes of action; multiple applications of fungicides with the same group number increases the chances for disease resistance.

Continued on next page
Table 2-12. Fungicide efficacy for leaf diseases of field corn (hybrid seed production and grain) (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Anthracnose</th>
<th>Eyespot</th>
<th>Gray leaf spot</th>
<th>Northern corn leaf blight</th>
<th>Northern corn leaf spot</th>
<th>Physoderma brown spot</th>
<th>Rust</th>
<th>Southern rust</th>
<th>Yellow leaf spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC codea)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratego YLD</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>-</td>
<td>10</td>
<td>8</td>
<td></td>
<td>prothioconazole + trifloxystrobin</td>
<td>triazole (3) QoI (11)</td>
<td>2.0–5.0 fl oz</td>
<td>14 days for grain and fodder; forage may be harvested the same day of application</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 10 fl oz/a/season. Do not apply more than two sequential applications or any other Group-11 fungicide without alternating with a fungicide from another group.</td>
<td></td>
</tr>
<tr>
<td>Tilt</td>
<td>-</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>x</td>
<td>-</td>
<td>8</td>
<td>6</td>
<td></td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2.0–4.0 fl oz</td>
<td>30 days for forage, grain, or stover</td>
</tr>
<tr>
<td>Remarks: Consult the label for disease-specific recommendations and rates. Do not apply more than 16 fl oz/a/season. Do not apply more than 8 fl oz/a/season on field corn harvested for forage. Do not apply more than 0.45 lb ai propiconazole-containing products/a/season.</td>
<td></td>
</tr>
<tr>
<td>Toledo</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4–6 fl oz</td>
<td>21 days for forage; 36 days for grain</td>
</tr>
<tr>
<td>Topaz</td>
<td>-</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>x</td>
<td>-</td>
<td>8</td>
<td>6</td>
<td></td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2–4 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 16 fl oz/a or more than 8 fl oz/a on field corn harvested for forage/a/season. Do not apply more than 0.45 lb ai/a propiconazole-containing products/a/season.</td>
<td></td>
</tr>
<tr>
<td>Topguard</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>flutriafol</td>
<td>triazole (3)</td>
<td>3.4–6.8 fl oz</td>
<td>80 days</td>
</tr>
<tr>
<td>Remarks: No single application of product can exceed 14 fl oz/a. Do not exceed two applications per season.</td>
<td></td>
</tr>
<tr>
<td>Trivapro A</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>benzovindiflupyr</td>
<td>Carboximides (7)</td>
<td>4 fl oz</td>
<td>7 days</td>
</tr>
<tr>
<td>Remarks: Apply in a tank mix with labeled rate of a registered fungicide containing FRAC group 3 and 11 active ingredients. Do not apply more than two applications before switching to a non-group 7 mode of action. The use of a spreading/penetrating adjuvant is recommended.</td>
<td></td>
</tr>
<tr>
<td>Trivapro B</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>9</td>
<td>8</td>
<td>Azoxystrobin + propiconazole</td>
<td>QoI (11) + triazole (3)</td>
<td>10.5 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 56 fl oz per acre/year. Do not apply more than two applications before switching to a non-group 7 mode of action. Do not use adjuvants between the V8 and VT growth stages.</td>
<td></td>
</tr>
<tr>
<td>Vertisan</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>pencythiopyrad</td>
<td>carboximides (7)</td>
<td>10–24 fl oz</td>
<td>7 days</td>
</tr>
<tr>
<td>Remarks: Make no more than two sequential applications before switching to a fungicide with a different mode of action.</td>
<td></td>
</tr>
<tr>
<td>Viathon</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Potassium phosphate + Tebuconazole</td>
<td>Phosphonate (33) + triazole (3)</td>
<td>2-3 pt</td>
<td>7 days</td>
</tr>
<tr>
<td>Remarks: Do not apply more than 12 pints/acre per season.</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy ratings: Excellent = 10; very good = 8; good = 6; fair = 4; poor = 2; no control = 0; labeled, no data = x; not labeled = -

*Fungicide group numbers indicate the modes of action; multiple applications of fungicides with the same group number increases the chances for disease resistance.
especially in fields located in valleys and in lowland areas along streams and rivers. These field locations can have prolonged periods of high relative humidity and low or moderate temperatures that favor most leaf diseases of corn. If it is necessary for you to plant hybrids susceptible to leaf diseases, only plant them in upland fields with good air drainage, where corn debris from the previous crop has been thoroughly covered by plowing or where corn does not follow corn in the rotation.

Northern corn leaf blight (NCLB) occurs statewide, but historically it has been more severe in low-lying fields.

Many hybrids have some tolerance to NCLB. In addition to a multiple gene resistance, which imparts fair-to-good resistance in some hybrids, the single dominant “Ht1” gene has been introduced into many hybrids to provide an apparent high degree of resistance. The addition of this gene within one parent of a hybrid cross can change a susceptible hybrid to a resistant form but leaves the general agronomic characteristics of the hybrid unaffected. If your seed dealer indicates that a formerly NCLB-susceptible hybrid is now resistant, this may be the reason. Some hybrids may contain both forms of genetic resistance. NCLB resistance is desirable throughout the state.

A strain of the NCLB fungus is common in the Midwest and will infect hybrids or inbreds with the “Ht1” gene. Wisconsin corn growers should be watchful for the occurrence of NCLB in hybrids rated as resistant. An “HtN” gene is being incorporated in some hybrids to control this new race. If certain fields have had high levels of NCLB despite the use of a resistant hybrid, you might inquire with your seed dealer about using a hybrid with the “HtN” form of resistance.

Northern leaf spot (NLS), *Bipolaris zeicola*, has appeared recently. This pathovar causes considerable damage to certain corn inbreds produced in the upper Midwest. Inbreds with B73 background, a popular inbred for the region, appear to be most susceptible. Hybrids from affected crosses show limited foliage symptoms with no apparent effect in yields. Thus, this pathovar is primarily a problem for the seed corn industry. Two sets of symptoms have occurred in Wisconsin, one affecting foliage, and the other affecting the roots and crowns of young plants. Lesions have developed first on the lower leaves. Given warm, wet conditions, the lesions move rapidly upward. Symptoms are variable depending in part upon the cultivar affected. Most often the lesions are elliptical (football shaped), 0.125 to 0.5 inches long, and have dark margins and light tan centers. There may be some yellowing (chlorosis) surrounding the spots. On other inbreds, the spots have appeared quite narrow and linear, at least initially.

The seedling blight phase of NLS has been prevalent in susceptible inbreds in some fields. Similar to cutworm injury symptoms, plants just emerging to 15 inches tall collapsed after showing sudden wilting. Root and crown examination revealed extensive dark brown internal and external discoloration beginning in the crown area of the plant.

Crop rotation is not a highly effective control measure, and chemical controls have proven inconsistent to date. If trying fungicides, watch for symptoms on foliage especially after tasseling. Begin treatment if lesions are present and if weather is warm and wet. Continue applications every 7 days during favorable weather up until 10 days before harvest. Seed treatments do not protect seedlings from the root and crown phase of the disease.

Eyespot can be severe when unusually cool, wet weather prevails, when corn is infrequently rotated, and when corn is grown under no-till or minimum tillage. Early-maturing hybrids appear to be more susceptible than full-season hybrids. If severity on leaves is higher than normal, eyespot can directly reduce grain yields; severe eyespot may predispose plants to stalk rot and ear rot because of early death and dryness. Generally in field corn, eyespot is more of a cosmetic issue. In sweet corn, eyespot may be more of a yield-limiter.

Common rust occurs each year but generally develops too late in the season to cause yield losses. The rust fungus does not overwinter in Wisconsin but is carried by winds from the southern states. This factor, along with its sensitivity to weather conditions, makes it a difficult disease to predict. The fungus produces oval or elongated cinnamon-brown blisters (pustules) scattered on both surfaces of the leaves. As the corn matures, the pustules become black. Rust can prematurely kill corn leaves if the disease develops early in the season and wet weather prevails. Most corn hybrids are considered resistant or tolerant.

Gray leaf spot (GLS) is common in southern Wisconsin. GLS is more severe if corn is planted continuously and if corn residue is left on the soil surface. Corn hybrids differ in reaction to GLS.

Corn smut can be recognized by the gray galls that form on all plant parts. When the galls mature, they break open, exposing the black powdery spores of the fungus. Galls that form on the ears and on the stalk above the ear can reduce yield. Most hybrids have good resistance to smut, but this resistance can be altered by hot, dry weather, mechanical injury, hail, and herbicide injury. Excessive application of nitrogen or manure may result in more smut than normal. Smutty corn is not harmful if fed to livestock. Foliar fungicides will usually not be needed to control corn smut.
Stewart's bacterial wilt has been documented in seedcorn fields in Wisconsin. Stewart's wilt is caused by a bacterium that is transmitted by the corn flea beetle. The severity of Stewart's bacterial wilt is directly related to beetle population levels.

There are two phases of the disease. One phase affects young plants that are infected by corn flea beetles that survive the winter. Usually infected seedlings rapidly wilt and die. The second and more common phase is a leaf blight that is most apparent after tasseling. Lesions on leaves are gray to green to yellow green and develop as streaks along the veins. Symptoms of Stewart's bacterial wilt may be confused with symptoms associated with northern corn leaf blight caused by a fungus. The use of resistant corn hybrids is the most economical control.

Goss's wilt has recently reemerged in Wisconsin and other areas of the Corn Belt. This bacterial disease has symptoms that can confuse it with other diseases like Stewart's wilt, Northern corn leaf blight, and Diplodia leaf streak, so proper identification is important. Symptoms include distinct light tan or yellow to gray lesions with wavy or irregular margins following the leaf veins. Dark green to black specks or flecks (freckles) are found within the lesions, which often have a shiny appearance due to the bacteria oozing onto the leaf surface. Lesions can coalesce, leading to whole leaves being blighted. In severely infected plants, wilting and stalk degradation can also occur, causing plant death. Examine stalks for Goss's wilt by splitting the tissue and looking for an orange to brown color with water-soaked and slimy tissue.

Management of this disease is focused on selecting hybrids with good resistance, residue management, and crop rotation. This includes tilling fields immediately after harvest to bury residue and planting a nonhost crop like soybean in the subsequent growing season.

Stalk rot

Stalk rot causes substantial losses each year through early plant kill or preharvest stalk lodging. It causes premature death of some plants, fermenting or rotting stalks, and a discolored pith that weakens the stalk. Stalk rot is caused by a complex of fungal organisms that are particularly damaging to plants subjected to stress during the growing season. High soil moisture in August appears to favor root infection of *Pythium* spp. This fungal infection leads to early plant death and subsequent stalk rot. Small ears and lodging often are the result of the early plant kill phase of the stalk rot disease.

Complete control of stalk rot is difficult, but you can take several steps to reduce the problem:

1. Select hybrids that perform best under your system of farming.
2. Maintain a high level of potassium in accordance with soil test recommendations.
3. Control blight diseases, which cause early leaf kill and increase the susceptibility to stalk rot.
4. Grow full-season corn hybrids where possible; early-maturing hybrids generally suffer more from stalk rot.
5. Harvest as early as practical to prevent greater losses from stalk lodging.
6. Minimize plant stresses during the growing season by controlling leaf-feeding insects and borers and irrigating during droughty conditions. Also, avoid unprofitably high plant populations and excessive applications of nitrogen, as both of these stresses increase stalk rot severity.

The nitrogen stabilizer nitrpyrin (NServe) reduces soil nitrogen losses from leaching, and it also reduces the incidence and severity of stalk rots in some tests. Less stalk lodging may be another benefit of NServe.

Anthracnose symptoms generally appear on the stalk after tasseling as narrow, vertical or oval, water-soaked lesions in the rind. These lesions become tan to reddish brown and eventually dark brown to black late in the season. Black lesions and patches may cover the lower internodes or the entire stalk. Black specks (spore-bearing structures) occasionally are found on the stalk rind. The black external lesions form large, shiny black areas or streaks that may be sunken. Internally, the pith tissues will be decayed and brown to black.

Occasionally, leaves above the ear may die 4-6 weeks after pollination while the lower portions of the plant remain green. The upper leaves may turn yellow or red, lodge, and drop off. In some cases, plants may die prematurely and later lodge. Lodging normally is found higher on the stalk when compared to other stalk rot diseases. Anthracnose also can cause a leaf spot phase that usually is not important on field corn but sometimes damages sweet corn.

Control recommendations are resistant hybrids (especially in minimum tillage fields), crop rotation or deep incorporation of corn debris, and balanced fertility.

Root and crown rot

Severe root and crown infections can cause sudden, premature death of plants early in the season or in late August and early September. Affected plants typically develop a uniformly gray to light green appearance a few days before they turn white. Kernels soon shrivel and are somewhat loose on the ears. Stalks are usually firm at this stage, although stalk rot frequently follows.

Symptoms often occur in pockets, although plants can be individually damaged. The primary effect on the crop is a loss from premature plant kill and increased harvesting problems.
Table 2-13. Nematode genera associated with corn in Wisconsin

<table>
<thead>
<tr>
<th>Genus (common name)</th>
<th>Incidence in Wisconsin</th>
<th>Potential damage</th>
<th>Symptoms</th>
<th>Other hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratylenchus (root lesion)</td>
<td>very common</td>
<td>moderately damaging</td>
<td>Smaller-than-normal root system. Darkened and discolored roots. Moderate stunting.</td>
<td>grasses, cereals, legumes, and vegetables Host range is different for each species of root-lesion nematode.</td>
</tr>
<tr>
<td>Longidorus (needle)</td>
<td>common</td>
<td>very damaging in sandy soils</td>
<td>Severe stunting, chlorosis. Severe root pruning. Root system consists mainly of short, stubby, thickened side roots that appear somewhat swollen.</td>
<td>grasses and potatoes</td>
</tr>
<tr>
<td>Hoplolaimus (lance)</td>
<td>occasional</td>
<td>moderately damaging</td>
<td>Reduced root system. Darkened and discolored roots. Moderate stunting.</td>
<td>grasses and legumes</td>
</tr>
<tr>
<td>Xiphinema (dagger)</td>
<td>occasional</td>
<td>moderately damaging</td>
<td>Severe plant stunting, chlorosis. Few fine feeder roots.</td>
<td>grasses and legumes</td>
</tr>
<tr>
<td>Helicotylenchus (spiral)</td>
<td>occasional</td>
<td>damaging only at high populations</td>
<td>Smaller-than-normal root system. Root decay. Mild stunting.</td>
<td>grasses and legumes</td>
</tr>
<tr>
<td>Tylenchoryncus (stunt)</td>
<td>occasional</td>
<td>damaging only at high populations</td>
<td>Smaller-than-normal root system. Moderate stunting, chlorosis.</td>
<td>grasses, cereals, and legumes</td>
</tr>
<tr>
<td>Trichodorus (stubby root)</td>
<td>rare</td>
<td>very damaging</td>
<td>Stubby lateral roots, coarse roots, excessive upper roots. Severe stunting, chlorosis.</td>
<td>grasses, legumes, potatoes, cabbages, and beets</td>
</tr>
</tbody>
</table>

Roots usually collapse and appear discolored from their tips toward the base of the stalk. Symptoms progress internally from the crown tissue upward into the stalk. Brace roots are also affected. The base of brace roots appear shriveled, though not necessarily discolored. *Pythium*, a “water mold” fungus, is believed to be the primary pathogen causing root rot in Wisconsin. Damage may be more severe in low, poorly drained sites and in many sites during years when abundant rains occur in July and August.

No control measures are available, although varieties appear to differ in susceptibility. No relationship to stalk-rot tolerance is believed to exist. The influence of rotations and fertility is not known. Early harvest of severely affected fields should minimize losses.

Nematode diseases

Fields with nematode problems occur in most regions of the state on sandy to clay loam soils. The lesion, lance, and needle nematodes appear to be the most prevalent nematode species associated with corn (table 2-13). In Wisconsin, high populations of nematodes reduce corn yields (table 2-14).

Disease caused by nematodes can be confused with other plant stresses such as low moisture, nutrient deficiencies, and soil compaction. Nematode damage may actually intensify the effects of low soil moisture and low soil fertility. Typical symptoms are small stalks, small ears, and nutrient deficiency symptoms. Nematode problems are diagnosed by examining the soil and roots for these microscopic soil organisms. Do not rely on visual assessments of corn plants to determine if damage is due to nematodes.

Sampling for corn nematodes. A nematode assay can be used to confirm a suspected nematode problem or to eliminate nematodes as one of several possible causes of poor plant growth.

The best results are obtained when soil and root samples are taken 4-8 weeks after planting. Nematode populations at this time appear to correlate best with yields obtained in the fall. However, late summer or fall samples also can be useful in predicting next year’s problems. Spring samples are less valuable.

Nematode damage to corn often appears in circular or oval pockets in the field. Rarely does an entire field show severe symptoms. Sample the suspected area.

Most laboratories require a fee to process samples for nematode analysis. You may want to contact the laboratory before submission. This is important because some laboratories may require plant or root ball samples in addition to soil samples. Table 2-15 lists laboratories that test for nematodes.

There are several ways to take a soil sample for nematode analysis. The following is a general guide:

1. Use a soil probe (preferred) or narrow-bladed trowel or shovel.
Take samples close to plants at a depth of 8-10 inches. Discard the upper 2 inches of soil, especially if it is dry. Be sure to include plant roots.

2. One sample is adequate for a 10-acre field or for a suspected area within the field. Sample soil and roots from 20-25 plants and mix into one sample; 1-2 pints of soil is adequate. Sample from plants in the margins of suspected areas and not from their centers. If there is no visible damage, use a zig-zag, W-, or X-shaped pattern to sample the field.

3. Place samples in sturdy plastic bags (do not use paper bags), fasten the open end securely, and accurately label the samples. Use care with the samples as nematodes need to be alive. Do not place samples where they can become dry and overheated. Mail samples early in the week to avoid delays in transit.

Laboratories will report the number of nematodes in nematode per pint (500 cc) of soil, per 100 cc of soil, or per gram of dry root. Each lab may have its own damage thresholds for individual nematode species. However, each lab will give an assessment regarding the possibility of economic damage.

Corn growers can use soil-test reports and strip tests (effective nematicides compared to no treatment) to determine if nematodes are reducing corn yields on their farms. If rootworms are present in a field, the strip test should include an effective insecticide/nematicide rather than a product that gives rootworm control but no nematode control.

If economic populations of nematodes are detected, you can use these control recommendations:

- **For chemical control, Counter 20G, Mocap 15G, Avicta Complete Corn, and Poncho/VOTiVO are registered nematicides for corn.** Thimet 20G, Lorsban 15G, and all other soil insecticides are not registered as nematicides. Counter 20G and Mocap 15G are more effective if applied in a 7-inch band at planting rather than in the furrow. Counter 20G is also registered as a corn soil insecticide, such as for corn rootworm control. However, the rates differ for nematode control. See corn rootworm discussion in the Corn insect management section for additional information on this chemical. Follow the label directions closely. Avicta Complete Corn and Poncho/VOTiVO are commercially applied seed treatments that are labeled to provide early season protection from plant pathogenic nematodes that attack the root system.

 - **Maintain high soil fertility.** Nutrient-deficient plants are more susceptible to nematode injury.
 - **Practice good weed control.** Many weeds are good hosts and will help maintain or even increase nematode populations.
 - **Crop rotation may be valuable, but little is known about the susceptibility of other crops to nematodes commonly found on corn.**

Table 2-14. Corn nematode populations associated with yield loss

<table>
<thead>
<tr>
<th>Genus (common name)</th>
<th>Nematodes/ 100 cc of soil</th>
<th>Nematodes/g of dry root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratylenchus (lesion)</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Longidorus (needle)</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Hoplolaimus (lance)</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Xiphinema (dagger)</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Helicotylenchus (spiral)</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Tylenchorhynchus (stunt)</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Trichodorus (stubby root)</td>
<td>50</td>
<td>—</td>
</tr>
</tbody>
</table>

Ear rot

Corn is susceptible to several ear rot fungi that reduce the yield, quality, and feeding value of the grain. Many of these fungi are capable of producing poisonous metabolites called mycotoxins that affect animal health. Gibberella and Fusarium ear rot are the most common ear rot diseases in Wisconsin. The prevalence and severity of ear rot is associated with above-normal rainfall from July through October, insect feeding on ears, severity of leaf diseases, and hail injury to ears.

Many fungi that cause ear rots also produce mycotoxins that are harmful if fed to livestock. The fungus that causes Gibberella ear rot produces mycotoxins that cause reproductive problems in swine. It also produces a mycotoxin called a refusal factor. If the refusal factor is present, swine will not eat the grain.

The following suggestions may help control corn ear rots:

1. Choose a corn hybrid less susceptible to rot. Ears that are well covered by husks and those that mature in a relinear position have less rot than ears with open husks or those that mature upright. Hybrids that are susceptible to leaf diseases may have more ear rot. Full-season hybrids have fewer ear rot problems than early-maturing hybrids.

2. Control corn earworms and corn borers where practical.

3. Harvest early.
Consider the following strategies when ear rots are prevalent.

- Harvest early; the risk of mycotoxin production increases as the harvest season progresses.
- Harvest as shelled corn or silage. The fungi associated with ear rots will cease activity in corn with less than 20% moisture content and will not survive the activities of fermentation in the silo. Problems may continue if stored as cribbed ear corn.

Corn molds and livestock disorders (mycotoxins)

Moldy grain is not only a grading factor in determining the quality and price of the product, but it can also affect livestock health and milk quality. Some molds under the right environment produce mycotoxins. These may accumulate in the field as corn matures or, more often, during transportation and/or storage.

Several common fungi associated with corn produce many different mycotoxins. Some fungi, such as the *Fusarium* (also called *Gibberella*) fungus that causes pink ear rot, may start in the field. Infection commonly occurs during the silking stage and gradually develops, especially as the grain matures during cool, wet fall periods. This fungus produces several known toxins that actually develop most commonly after fungal growth has occurred, when moderately cool temperatures prevail (50-70°F) and kernel moisture is above 20%. These conditions not only exist during many fall seasons, but they can occur when grain sits in bins before grain drying or in feeder boxes. The *Aspergillus flavus* fungus, which was associated with the aflatoxin problem of the drought seasons of 1988 and 2012, can also have its start in the field, but like most other mycotoxin-associated fungi, it is likely to be more damaging as it develops in storage.

Each fungus has its own environmental niche for growth and development. *Cladosporium*, a black fungus found in cold, wet fields, will grow below freezing. Fortunately, it doesn't produce any known toxin. Most *Aspergillus* and *Penicillium* species are “storage” fungi only; they're not found abundantly in field corn, and most are favored by higher temperatures. However, *Aspergillus glaucus* can grow at 13.5% grain moisture (72% relative humidity), and some *Penicillium* species can grow at 35°F and around 16% moisture. Growth is slow at first, but heat and moisture migration encourages more rapid mold growth.

Fortunately, the presence of a particular fungus does not mean the poison mycotoxin also is present, but it can be cause for concern. The molds are not always easy to see. Moreover, in most instances, once the poison mycotoxin has been produced, it is not readily destroyed, even when the fungus itself is stopped or killed. Consequently, the steps outlined to prevent mold buildup, and possibly subsequent mycotoxin development, are important to follow.

Mold control recommendations include prompt drying after harvesting to 13% moisture or below (especially for longer term storage) or removing oxygen, which is required for mold growth, by proper ensiling. Feed corn can also be treated for temporary storage with propionic or other labeled organic acids. None of these destroy toxins, but they prevent accumulated buildup. See comments under Storage Diseases.

Should you suspect a moldy feed problem, stop using that feed and call a veterinarian. Table 2-16 lists several laboratories that will test feed for some of the toxins listed above.

Table 2-15. Directory of nematology laboratories

<table>
<thead>
<tr>
<th>State laboratories</th>
<th>Illinois</th>
<th>Iowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin Plant Disease Diagnostic Clinic</td>
<td>University of Illinois Plant Clinic</td>
<td>ISU Plant and Insect Diagnostic Clinic</td>
</tr>
<tr>
<td>UW-Madison</td>
<td>1102 S. Goodman</td>
<td>327 Bessey Hall</td>
</tr>
<tr>
<td>Madison, WI 53706-1598</td>
<td>S-417 Turner Hall</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>(608) 262-2863</td>
<td>Urbana, IL 61801</td>
<td>Ames, IA 50010</td>
</tr>
<tr>
<td>labs.russell.wisc.edu/</td>
<td>(271) 333-0519</td>
<td>(515) 294-0581</td>
</tr>
<tr>
<td></td>
<td>web.extension.illinois.edu/plantclinic</td>
<td>www.ent.iastate.edu/pidc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private laboratories</th>
<th>Allied Cooperative/Pest Pros Consultants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest Laboratories</td>
<td>P.O. Box 729, 540 S. Main St.</td>
</tr>
<tr>
<td>Omaha, NE 68144</td>
<td>Adams, WI 53910</td>
</tr>
<tr>
<td>(402) 334-7770</td>
<td>(715) 335-4046</td>
</tr>
</tbody>
</table>
Table 2-16. Directory of mycotoxin laboratories

The following laboratories can offer qualitative and quantitative analysis for mycotoxins that include but are not limited to aflatoxins, DAS, fumonisin, ochratoxins, T-2, vomitoxin, and zearalenone. Contact individual laboratories directly for information about prices and services, sample submission, and other details.

<table>
<thead>
<tr>
<th>Laboratory Name</th>
<th>Address</th>
<th>Website</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgSource Soil and Forage Laboratory</td>
<td>106 North Cecil Street</td>
<td>agsource.crinet.com</td>
<td>(715) 758-2178</td>
</tr>
<tr>
<td>Animal Disease Laboratory</td>
<td>2100 South Lake Storey Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumberland Valley Analytical Services, Inc.</td>
<td>730 Warren Road</td>
<td>foragelab.com</td>
<td>(800) 282-7522</td>
</tr>
<tr>
<td>Dairy One Forage Lab Services</td>
<td>730 Warren Road</td>
<td>dairyone.com</td>
<td>(607) 257-1272</td>
</tr>
<tr>
<td>Dairyland Laboratories</td>
<td>217 East Main Street</td>
<td>dairylandlabs.net</td>
<td>(608) 323-2123</td>
</tr>
<tr>
<td>Midwest Laboratories</td>
<td>13611 B Street</td>
<td>midwestlabs.com</td>
<td>(402) 334-7770</td>
</tr>
<tr>
<td>Rock River Laboratory, Inc.</td>
<td>710 Commerce Drive</td>
<td>rockriverlab.com</td>
<td>(920) 261-0446</td>
</tr>
<tr>
<td>Romer Labs, Inc.</td>
<td>Attn: Analytical Services</td>
<td>romerlabs.com</td>
<td>(636) 583-8600</td>
</tr>
<tr>
<td>North Dakota Veterinary Diagnostic Laboratory</td>
<td>174 Van E S Hall</td>
<td>vdl.ndsu.edu</td>
<td>(701) 231-8307</td>
</tr>
<tr>
<td>Veterinary Diagnostic Labs</td>
<td>1600 South 16th Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veterinary Medical Diagnostic Laboratory</td>
<td>1600 East Rollins</td>
<td>vmdl.missouri.edu</td>
<td>(573) 882-6811</td>
</tr>
</tbody>
</table>

Table 2-17. Some mycotoxins and their effects

<table>
<thead>
<tr>
<th>Toxin or syndrome and (primary) fungal source</th>
<th>Possible animal effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus toxins (primarily)</td>
<td></td>
</tr>
<tr>
<td>Aflatoxins (B1, B2, G1, and G2; B1 is most important)</td>
<td>Liver damage; carcinogenic; reduced growth; hemorrhaging</td>
</tr>
<tr>
<td>Ochratoxins</td>
<td>Kidney and liver damage; abortion</td>
</tr>
<tr>
<td>Sterigmatocystin</td>
<td>Generally toxic; carcinogenic</td>
</tr>
<tr>
<td>Tremorgenic toxin</td>
<td>Tremors and convulsions</td>
</tr>
<tr>
<td>Penicillium toxins (primarily)</td>
<td></td>
</tr>
<tr>
<td>Patulin</td>
<td>Lung and brain hemorrhages; edema; kidney damage; possibly carcinogenic</td>
</tr>
<tr>
<td>Rubratoxin</td>
<td>Liver damage; hemorrhaging</td>
</tr>
<tr>
<td>Citrinin</td>
<td>Kidney damage</td>
</tr>
<tr>
<td>Fusarium toxins</td>
<td></td>
</tr>
<tr>
<td>Emetic factor, vomitoxin (deoxynivalenol, DON)</td>
<td>Vomiting; feed refusal by swine, cats, and dogs</td>
</tr>
<tr>
<td>Feed refusal factor (may be same as above)</td>
<td>Feed refusal by swine</td>
</tr>
<tr>
<td>Other trichothecces such as T-2, MAS, DAS</td>
<td>Inflammation of gastrointestinal tract; possible hemorrhaging, edema, vomiting, infertility, and other symptoms</td>
</tr>
<tr>
<td>Zearalenone and zearalenol (estrogenic syndrome)</td>
<td>Increased estrogenic activity; infertility</td>
</tr>
</tbody>
</table>
Table 2-17 shows some recognized mycotoxins associated with certain fungi attacking corn and possible animal effects.

Storage diseases
You can store grain for several years with little or no loss of quality if you maintain it at proper moisture content. For example, corn at 13% moisture content or lower can be stored indefinitely regardless of temperature. Note that this is below the 15.5% moisture content required for No. 2 grade corn. Corn at 15.5% moisture content can be safely stored for extended periods of time if the grain temperature is low. However, problems can develop as the grain temperature rises in the spring and during the summer. Table 2-18 charts how long grain can be stored at various temperatures before corn will begin to decay, given the grain's moisture content.

Microbial activity may result in loss of nutrients in the grain; microbes produce heat during growth, and heat damage can occur. Certain microorganisms, mainly fungi, produce toxins (mycotoxins) that can cause illness or even death when consumed by livestock or humans. Since microorganisms affect the value of stored grains in many ways, it is extremely important to minimize this activity.

Storage life of shell corn depends on a combination of factors including moisture content, temperature, degree of invasion by storage fungi, and length of time the corn is to be stored.

The following suggestions may help control corn storage diseases.

- Clean bins thoroughly before filling.
- Dry shell corn to 12 or 13% moisture content. No damaging invasion by storage fungi will occur below this level.
- Store shelled corn in weather-tight bins. Snow and rain are external sources of moisture that can raise the moisture content of stored grain.
- Check stored grain frequently, especially during warm weather. Collect grain samples from several areas in the bin, including the center. A sampling procedure is outlined in table 2-19.

In circular bins, the grain surface can be divided into “pie sections” for sampling. Make temperature samples by probing the grain 12-15 feet with a shielded small-diameter thermometer screwed onto a threaded pipe extension. A good routine to follow is to leave the temperature probe in place while making probes for moisture content. A 6-foot compartmentalized grain trier or implement is best for making probes for moisture content determinations. Do not combine samples when making moisture content determinations. It is important to know the highest moisture content of the bin and where it is located, not an overall bin average. The highest moisture area can serve as a source for moisture migration and is the area where storage fungi will first become active.

- Never inspect grain bins alone. Many people have been covered by grain and suffocated. Work in teams of three, one member wearing a safety line while inside the bin, and the other two handling the line outside. Also, place a sign outside the bin that warns others that people are inside the facility.

- Aeration systems for grain bins can maintain grain quality by reducing the temperature of stored corn and keeping the temperature uniform throughout the bin to prevent moisture migration. You can minimize the problem of moisture migration by keeping the temperatures of the grain in

Table 2-18. Maximum time for storage of shelled corn at various corn moisture and air temperatures

<table>
<thead>
<tr>
<th>Storage air temperature</th>
<th>Corn moisture content</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15%</td>
<td>20%</td>
</tr>
<tr>
<td>75˚ F</td>
<td>116</td>
<td>12.1</td>
</tr>
<tr>
<td>70˚ F</td>
<td>155</td>
<td>16.1</td>
</tr>
<tr>
<td>65˚ F</td>
<td>207</td>
<td>21.5</td>
</tr>
<tr>
<td>60˚ F</td>
<td>259</td>
<td>27.0</td>
</tr>
<tr>
<td>55˚ F</td>
<td>337</td>
<td>35.0</td>
</tr>
<tr>
<td>50˚ F</td>
<td>466</td>
<td>48.0</td>
</tr>
<tr>
<td>45˚ F</td>
<td>725</td>
<td>75.0</td>
</tr>
<tr>
<td>40˚ F</td>
<td>906</td>
<td>94.0</td>
</tr>
<tr>
<td>35˚ F</td>
<td>1,140</td>
<td>118.0</td>
</tr>
</tbody>
</table>

The times given above are those in which mold growth will cause enough loss in corn quality to bring about a lowering of grade or permit mold growth that could result in mycotoxin formation. Data are from USDA Farmer’s Bulletin No. 2238, Guidelines for Mold Control in High-Moisture Corn.

Table 2-19. General guide for sampling stored grain

<table>
<thead>
<tr>
<th>Probe depth</th>
<th>Bin diameter</th>
<th>< 24 ft</th>
<th>> 24 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>samples/bin</td>
<td></td>
</tr>
<tr>
<td>Temperature probes</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>deep</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Moisture probes</td>
<td>shallow</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>deep</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

* In the bin center
the center of the bin within 10°F of the average grain temperature near the bin wall. To do this, use aeration fans that pull the air down through the grain at airflow rates of at least 10 cubic foot per minute (cfm) for each bushel of grain in the bin. Aerate the grain until the temperature of the grain mass is within 10°F of the average monthly temperature. It is not necessary to lower grain temperatures below 40°F because most grain storage fungi are not active below this temperature. Also, aeration systems should not be used to raise the temperature above 60°F because fungi and insects are more active above this temperature.

- Control storage insects; their activities can increase the moisture content of grain. Fumigation may rid grain of insects but not storage fungi.

- Store high-moisture grain in airtight silos or treat grain with organic acids.

When “hot spots” or a crust of moldy corn is found, follow these steps:

1. The decayed and moldy corn should be discarded if mold is severe. Corn with some mold can be dried and fed to livestock, but caution should be exercised. Moldy corn can be fed with less risk if mixed with sound corn but is considered unsafe for all breeding animals.

2. The remaining corn can be turned and thoroughly mixed to redistribute moisture and allow heat to escape. Aeration does this more cheaply and effectively than transferring grain from bin to bin and does not crush and break kernels.
SOYBEAN
PEST MANAGEMENT
Soybean weed management

Herbicide treatments are specific as to time and method of application, soil type, rate applied, and are weed species specific. Crops that follow in rotation are also important considerations. Assist your herbicide treatment with a rotary hoe and row cultivation where soybean are planted in wide rows. For narrow-row soybean, use a rotary hoe and an increased planting rate to place soybean seedlings in the most competitive position with weeds. Mechanical weed control is seldom an option in no-till soybean. Check fields regularly to be sure that weeds are being managed on a timely basis.

Many herbicide combinations are registered for use on soybean (see tables 3-1a and 3-1b). The use of herbicide combinations that are not registered is discouraged since liability for performance and crop injury lie solely with the user (and it is illegal). Similarly, the combination of herbicides with fertilizers or insecticides for simultaneous application is discouraged unless the herbicide label outlines directions for such combination use. Be sure to check the herbicide label or accompanying literature carefully before using herbicides in combination with fertilizers, insecticides, or other herbicides.

Burndown herbicides for no-till soybean

No-till cropping systems are increasingly popular because they offer economic and environmental benefits. Weed management is particularly important in these systems because tillage is not done before planting and few producers cultivate no-till fields after planting. The purpose of a burndown herbicide application is to ensure that the crop is planted into a weed-free setting.

No-till soybean fields are more likely to need a burndown application than corn because soybean are planted later. Check fields carefully to determine if such a treatment is needed. Give particular attention to perennial weeds like dandelion, white cockle, and quackgrass as well as winter annuals like shepherd's purse, chickweeds, buttercups, and pennycress.

Soybean herbicides

2,4-D LV4 (Shredder)

Burndown rate: 1 pt/a; 1 pt/a of a 3.8 lb/gal 2,4-D ester formulation or equivalent

Adjuvants: COC, NIS. Approved crop oil concentrates, agricultural surfactants, and liquid fertilizers may be added to the spray mixture to improve control.

PRE: Apply no less than 7 days before planting. Applications of 1 qt/a require a 30-day wait before planting.

NO-TILL: Apply before no-till soybean planting for the suppression or control of small, actively growing broadleaf weeds. This treatment can be used to control broadleaf weeds that aren’t effectively controlled by Gramoxone or glyphosate. This treatment may be tank mixed with many conservation-tillage soybean treatments for improved broadleaf weed control.

Precaution: There is some risk of soybean injury, especially if heavy rains occur after application. Do not apply 2,4-D before planting unless you are prepared to accept soybean injury including possible stand loss and/or yield reduction in some years. Plant soybean 1-2 inches deep, and make certain the seed is adequately covered. Do not use on sandy soils with less than 1% organic matter. Do not cultivate between herbicide application and soybean planting.

Afforia

Burndown rate: 2.5-3.75 oz/a; Apply no more than 2.5 oz/a if treating at least 1 day prior to planting. Rates of up to 3.75 oz/a can be used if applying at least 7 days prior to planting.

Adjuvants: COC, MSO, NIS. Add crop oil concentrate or methylated seed oil at 1% unless tank mix herbicide label doesn’t allow then use a nonionic surfactant at 0.25%.

PRE: 2.5-3.75 oz/a; Apply no more than 2.5 oz/a if treating at least 1 day prior to planting. Rates of up to 3.75 oz/a can be used if applying at least 7 days prior to planting.

Crop stage: Do not apply to soybean that have either cracked or emerged as severe injury will occur.

Weed timing: Tank mix other herbicides to control, if weed size exceeds 3 inches.

Remarks: Provides two modes of action for residual broadleaf and partial grass suppression. For season-long control of grasses POST treatments will be needed. Rate for application should be based on soil characteristics as well as the most difficult weed to control being targeted. Label recommends including 2,4-D in burn-down treatment. Do not tank mix or apply any Organophosphate insecticides at planting or within 14 days of planting or injury may result. See label for additional restrictions with respect to other herbicide uses in fields treated with this product.

Anthem Maxx

pyroxasulfone + fluthiacet

PRE: 2.0-5.5 fl oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Adjuvants: COC, M50, NIS. Add either crop oil concentrate or methylated seed oil at 1-2 pt/a or nonionic surfactant at 0.25%.

Crop stage: Can be applied greater than 14 days prior to soybean planting.

Remarks: Applications to weeds larger than specified on the label can result in unsatisfactory control. Do not apply more than 0.0089 lb ai/a of fluthiacet or 2.66 lb ai/a pyroxasulfone in a 12-month cropping year.

POST: 2.0-5.7 fl oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Adjuvants: COC, M50, NIS. Add either crop oil concentrate or methylated seed oil at 1-2 pt/a or nonionic surfactant at 0.25%.

Remarks: Applications to weeds larger than specified on the label can result in unsatisfactory control. Do not apply more than 0.0089 lb ai/a
of fluthiacet or 2.66 lb ai/a pyrosulfone in a 12-month cropping year.

Anthem pyroxasulfone + fluthiacet

PRE: 5-11 fl oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Adjuvants: COC, MSO, NIS. Add either crop oil concentrate or methylated seed oil at 1-2 pt/a or nonionic surfactant at 0.25% to the spray mixture.

Remarks: Applications to weeds larger than specified on the label can result in unsatisfactory control. Do not apply more than 0.0089 lb ai/a of fluthiacet or 2.66 lb ai/a pyrosulfone in a 12-month cropping year.

POST: 4-11 fl oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Adjuvants: COC, MSO, NIS. Add either crop oil concentrate or methylated seed oil at 1-2 pt/a or nonionic surfactant at 0.25% to the spray mixture.

Remarks: Applications to weeds larger than specified on the label can result in unsatisfactory control. Do not apply more than 0.0089 lb ai/a of fluthiacet or 2.66 lb ai/a pyrosulfone in a 12-month cropping year.

Assure II quizalofop

POST: 7-10 fl oz/a; To control volunteer Roundup Ready corn, use 4 fl oz/a for 12-inch tall corn, 5 fl oz/a for 18-inch tall corn, and 8 fl oz/a for 30-inch tall corn.

Adjuvants: COC, NIS. Add either crop oil concentrate at 1% or nonionic surfactant at 0.25% to the spray mixture.

Crop stage: Apply any time after emergence until soybean pod set or up to 80 days before harvest.

Remarks: Can be tank mixed with Basagran, Classic, Flexstar, Harmony SG, and Synchrony, but grass control may be reduced. This antagonism can be reduced by increasing the rate or by applying in a separate application. In sequential applications, apply 1 day before or 7 days after the broadleaf herbicide.

Authority Elite sulflentrazone + metolachlor

PPI: 19.38 oz/a. Rate dependent on % soil organic matter and texture. See label for details. Do not apply on coarse textured soils with low organic matter to sands with less than 1% organic matter.

Crop stage: Apply within 14 days and incorporate into the top 2 inches of soil.

Remarks: The length of residual activity will depend on the rate used. At reduced rates, it will provide early-season broadleaf weed control and grass suppression when followed by glyphosate in Roundup Ready soybean. Heavy rains after application or cold, wet soils may increase the risk of injury.

PRE: 6-12 fl oz/a; Reduced rates of 4-6 fl oz/a are recommended for early-season weed suppression when followed by glyphosate in Roundup Ready soybean. Do not apply to sands with less than 1% organic matter. Do not apply if steady wind speed exceeds 10 mph.

Crop stage: Apply within 14 days and incorporate into the top 1-3 inches of soil.

Remarks: The length of residual activity will depend on the rate used. At lower rates, it will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. At full rates, annual grasses will be suppressed, but will likely need to be controlled postemergence. The seed furrow must be closed prior to applying this premix or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur.

Authority MTZ sulflentrazone + metribuzin

PPI: 12-20 oz/a; Reduced rates of 8-14 oz/a are recommended for early season weed suppression when followed by glyphosate in Roundup Ready soybean. Do not apply to sands with less than 1% organic matter.

Crop stage: Apply and incorporate into the top 2 inches of soil.

Remarks: The length of residual activity will depend on the rate used. At the reduced rates, it will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. At full rates, annual grasses will be suppressed, but will likely need to be controlled postemergence. The seed furrow must be closed prior to applying this premix or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur.

PPI: 6-12 fl oz/a; Reduced rates of 4-6 fl oz/a are recommended for early-season weed suppression when followed by glyphosate in Roundup Ready soybean. Do not apply to sands with less than 1% organic matter.

Crop stage: Apply up to 30 days before or within 3 days after planting.

Remarks: The length of residual activity will depend on the rate used. At lower rates, it will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. At full rates, annual grasses will be suppressed, but will likely need to be controlled postemergence. The seed furrow must be closed prior to applying this premix or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur.
Table 3-1a. Weed control ratings of preplant-incorporated and premergence soybean herbicides

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Preplant-incorporated (PPI)</th>
<th>Preemergence (PRE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grasses</td>
<td>Broadleaves</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>3 1</td>
<td>9 9 9 9 8 9 7 8 0</td>
</tr>
<tr>
<td>Treflan</td>
<td>3 1</td>
<td>9 9 9 9 8 9 7 7 0</td>
</tr>
<tr>
<td>2,4-D, Shredder</td>
<td>4 2</td>
<td>0 0 0 0 0 0 0 8 9 9 8 9 8 7 8 8 5 7 0</td>
</tr>
<tr>
<td>Afforia</td>
<td>2,14</td>
<td>5 5 5 5 6 5 5 5 9 8 8 6 9 9 7 8 5 7 5 5 0</td>
</tr>
<tr>
<td>Anthem</td>
<td>14,15</td>
<td>2 9 9 9 7 9 7 0 6 9 0 6 9 — 6 0 0 0 6 —</td>
</tr>
<tr>
<td>Authority Max</td>
<td>14,15</td>
<td>2 9 9 9 7 9 7 0 6 9 0 6 9 — 6 0 0 0 6 —</td>
</tr>
<tr>
<td>Authority Elite</td>
<td>14,15</td>
<td>2 9 9 9 7 9 7 7 6 8 8 6 9 9 7 7 5 5 5 7 0</td>
</tr>
<tr>
<td>Authority First</td>
<td>2,14</td>
<td>2 6 6 6 0 6 0 0 8 9 9 8 9 9 8 5 5 5 7 0</td>
</tr>
<tr>
<td>Authority Max</td>
<td>2,14</td>
<td>2 5 5 5 5 5 5 5 0 0 7 8 8 7 9 8 8 8 5 6 5 5 0</td>
</tr>
<tr>
<td>Boundary 6.5 EC</td>
<td>14,15</td>
<td>3 9 9 9 7 9 7 7 7 9 6 9 9 8 9 5 5 5 7 5</td>
</tr>
<tr>
<td>Broadaxe</td>
<td>14,15</td>
<td>2 9 9 9 7 9 7 7 6 8 8 6 9 9 7 7 5 5 5 7 0</td>
</tr>
<tr>
<td>Canopy Blend</td>
<td>2,6</td>
<td>2 7 7 7 — 7 — — 9 8 — 8 9 8 9 6 7 — — —</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>15</td>
<td>1 9 9 9 7 9 7 7 0 7 9 5 8 8 5 5 0 0 0 7 0</td>
</tr>
<tr>
<td>Enlist Duo</td>
<td>4, 9</td>
<td>1 9 9 9 9 9 9 9 9 9 9 9 8 9 9 7 9</td>
</tr>
<tr>
<td>Envive</td>
<td>2, 14</td>
<td>2 5 5 5 5 — — — 9 8 9 7 9 9 — 8 — 9 — — —</td>
</tr>
<tr>
<td>Fierce</td>
<td>14, 15</td>
<td>4 9 9 9 7 9 7 7 7 9 5 9 7 7 5 5 5 7 —</td>
</tr>
<tr>
<td>Fierce XLT</td>
<td>2, 14, 15</td>
<td>4 9 9 9 7 9 7 7 7 7 9 9 7 7 5 5 5 7 —</td>
</tr>
<tr>
<td>FirstRate</td>
<td>2 2</td>
<td>5 5 5 5 0 5 0 0 8 9 5 9 8 9 9 8 0 — — 0 0</td>
</tr>
<tr>
<td>INTRRO</td>
<td>15 1</td>
<td>9 9 9 7 9 7 7 0 7 9 5 7 8 5 5 0 0 0 7 0</td>
</tr>
<tr>
<td>Lorox</td>
<td>7 4</td>
<td>7 7 7 5 7 5 5 7 9 7 8 8 9 9 8 5 5 0 0 0 0</td>
</tr>
<tr>
<td>Marvel</td>
<td>14 5</td>
<td>5 5 5 5 5 5 5 8 9 9 7 8 9 9 6 6 5 0 0 0 0</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>5 4</td>
<td>7 5 7 5 7 5 5 5 8 9 5 7 9 9 9 5 5 5 5 5</td>
</tr>
<tr>
<td>OpTill</td>
<td>2, 14</td>
<td>2 7 7 7 5 8 5 5 5 7 8 7 8 8 8 8 5 6 5 5 0</td>
</tr>
</tbody>
</table>

Risk of soybean injury: 6 = high; 4 = moderate; 2 = slight; 1 = very slight; 0 = none
Control ratings: 10 = excellent; 8 = good; 6 = poor; 4 = fair; 0 = none; — = insufficient information

These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

Continued on next page
Table 3-1a. Weed control ratings of preplant-incorporated and premergence soybean herbicides* (continued)

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Mode of action group</th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpTill PRO</td>
<td>2,14,15</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Outlook</td>
<td>15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Prefix</td>
<td>14,15</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Pursuit</td>
<td>2,1</td>
<td>1</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Python</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sequence*</td>
<td>9,15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Sharpen</td>
<td>14,2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sonic</td>
<td>14,2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Surveil</td>
<td>2,14</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Trivence</td>
<td>2,5,14</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Valor SX</td>
<td>14</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Valor XLT</td>
<td>2,14</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Warrant</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Warrant Ultra</td>
<td>14,15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Zidua</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Risk of soybean injury: 6 = high; 4 = moderate; 2 = slight; 1 = very slight; 0 = none
Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information
*aThese herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.
**These herb science society of america-approved group numbers for the corresponding herbicide mode of action.
Table 3-1b. Weed control ratings of soybean postemergence herbicides

| Herbicides | Mode of action group | Risk of soybean injury | Barleygrass | Crabgrass | Fall panicum | Field sandbur | Foxtails | Volunteer Com | Wild proso millet | Woodycupgrass | Cocklebur | Common ragweed | Eastern black nightshade | Giant ragweed | Lambsquarters | Pigweeds | Smartweeds | Velvetleaf | Canada thistle | Dandelion | Hemp dogbane | Nutsedge | Quackgrass |
|-----------------------------|----------------------|------------------------|-------------|-----------|-------------|---------------|-----------|--------------|-------------------|----------------|-----------|----------------|---------------------------|---------------|---------------|---------|-----------|-----------|-------------------|---------|----------|---------|
| **Postemergence** | | | | | | | | | | | | | | | | | | | | | | |
| Assure II | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Anthem | 15 | 2 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 7 | 7 | 0 | 6 | 9 | 0 | 0 | 0 | 0 | 6 | | | |
| Anthem Maxx | 15 | 2 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 7 | 7 | 0 | 6 | 9 | 0 | 0 | 0 | 0 | 6 | | | |
| Basagran | 6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 8 | 7 | 5 | 6 | 9 | 9 | 7 | 5 | 8 |
| Cadet | 14 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 7 | 5 | 8 | 5 | 9 | 5 | 5 | 0 | | | |
| Classic | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 9 | 8 | 5 | 5 | 8 | 5 | 9 | 9 | 8 | 8 | 5 | 8 |
| Cobra | 14 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 0 | 5 | 9 | 9 | 8 | 8 | 7 | 9 | 8 | 8 | 5 | 5 | 7 | 5 |
| Dual II Magnum | 15 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 7 | 7 | 0 | 7 | 9 | 5 | 8 | 8 | 5 | 0 | | | |
| Extreme^a | 2,9 | 2 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 8 | 8 | 9 | 9 | | | |
| FirstRate | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 9 | 9 | 9 | 5 | 5 | 8 | 8 | 8 | 7 | — | — | 0 |
| Flexstar | 14 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | 9 | 9 | 8 | 8 | 7 | 9 | 8 | 8 | 7 | 7 | 5 | 5 |
| Flexstar GT 3.5^e | 9,14 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 9 | 9 | 9 | 7 | 9 | 9 | 8 |
| Fusilade DX | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Fusion | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Harmony SG^c | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 0 | 5 | 9 | 9 | 9 | 8 | 9 | 5 | 5 | 5 | 8 |
| Liberty 280 SL^{f,g}| 10 | 2 | 7 | 8 | 8 | 7 | 8 | 7 | 8 | 8 | 9 | 9 | 8 | 8 | 8 | 9 | 8 | 8 | 7 | 7 | 5 | 7 |
| Marvel | 14 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | 9 | 9 | 7 | 8 | 9 | 8 | 9 | 9 | 6 | 6 | 6 | 5 |
| Outlook | 15 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 7 | 7 | 0 | 7 | 9 | 5 | 8 | 8 | 5 | 0 | 0 | 0 | 7 |
| Phoenix | 14 | 6 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 9 | 9 | 8 | 7 | 9 | 8 | 9 | 8 | 7 | 8 | 8 | 5 | 7 |
| Poast Plus | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Pursuit | 2 | 2 | 8 | 7 | 8 | 7 | 8 | 6 | 5 | 7 | 8 | 8 | 9 | 7 | 9 | 8 | 9 | 8 | 9 | 7 | 5 | 9 |
| Raptor | 2 | 4 | 8 | 7 | 8 | 7 | 9 | 7 | 8 | 7 | 9 | 8 | 8 | 9 | 8 | 9 | 9 | 9 | 7 | 9 | 9 | 8 |
| Resource | 14 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 7 | 8 | 5 | 5 | 7 | 5 | 7 | 9 | 5 | 5 | 5 | 5 | 5 |
| Roundup PowerMAX^e | 9 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 |
| Select Max | 1 | 0 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 | 9 | 8 |
| Sequence^e | 9,15 | 1 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 9 | 9 | 8 |

Risk of soybean injury: 6 = high; 4 = moderate; 2 = slight; 1 = very slight; 0 = none
Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

^a These herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

^b Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

^c Risk of injury on STS soybeans is very slight.

^d Only apply to Roundup Ready soybeans or severe injury will occur.

^e Will not control Roundup Ready volunteer corn.

^f Only use on Liberty Link soybean.

^g Only effective if volunteer corn is not glufosinate tolerant.

Continued on next page
Table 3-1b. Weed control ratings of soybean postemergence herbicides

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Mode of action group<sup>b</sup></th>
<th>Grasses</th>
<th>Broadleaves</th>
<th>Perennials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk of soybean injury</td>
<td>Barnyardgrass</td>
<td>Crabgrass</td>
<td>Fall panicum</td>
</tr>
<tr>
<td>Postemergence (continued)</td>
<td>Risk of soybean injury</td>
<td>Barnyardgrass</td>
<td>Crabgrass</td>
<td>Fall panicum</td>
</tr>
<tr>
<td>Synchrony XP<sup>c</sup></td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Touchdown<sup>d,e</sup></td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>25</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Warrant</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Warrant Ultra</td>
<td>14 , 15</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Zidua</td>
<td>15</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

*Risk of soybean injury: 6 = high; 4 = moderate; 2 = slight; 1 = very slight; 0 = none
Control ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

^aThese herbicides have been rated for expected weed control, but actual results may vary depending upon rates applied, soil types, weather conditions, and crop management.

^bWeed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

^cRisk of injury on STS soybeans is very slight.

^dOnly apply to Roundup Ready soybeans or severe injury will occur.

^eWill not control Roundup Ready volunteer corn.

^fOnly use on Liberty Link soybean.

^gOnly effective if volunteer corn is not glufosinate tolerant.
will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. Heavy rains after application, cold, wet soils, or soils with a pH greater than 7.5 may increase the risk of injury. The seed furrow must be closed prior to application or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur.

Authority Maxx sulflurazone + chlorimuron

PPI: 5.0-9.6 oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Crop stage: Incorporate no deeper than 2 inches prior to planting.

Remarks: Provides residual control of several broadleaf and grass weeds. Do not apply to soils with a pH greater than 7.6.

PRE: 5.0-9.6 oz/a; Rates are based on % organic matter and soil texture. See label for details. If a large amount of residue exists use the higher end of the rate range.

Crop stage: Apply in the fall or in the spring until planting. Spring applications must be made within 3 days after planting. Do not apply to cracking soybean.

Remarks: Provides residual control of several broadleaf weeds. Applications in the fall should include 2,4-D or glyphosate for dandelion control. Add additional tank mix partners to suppress emerged weeds. Do not apply to soils with a pH greater than 7.6.

Autumn Super 51 WDG iodosulfuron + thiacarbazine

Burndown rate: 0.5 oz/a

Adjuvants: COC, MSO, N, AMS. Add 1% crop oil concentrate or methylated seed oil and either 1.5-2 qt/a 28% urea ammonium nitrate or 1.5-3.0 lb/a ammonium sulfate.

Crop stage: Apply in the fall after harvest or 60 days before planting soybean in the spring.

Remarks: Is intended to provide fall burndown control and limited residual activity on broadleaf weeds including alfalfa, plantain, dandelion, horseweed, and several mustard species. The label recommends application to certain broadleaf weeds up to 3 inches and annual grasses no greater than 1 inch in height. However, it can be tank mixed with 2,4-D, glyphosate, dicamba, paraquat, or metribuzin for enhanced burndown activity and increased weed spectrum and sizes consistent with the label of the tank-mix partner. The 30-day interval between application and corn planting will primarily limit use to fall applications. It is rainfast in 2 hours. Do not apply to frozen soil or soil with pH greater than 8.0.

Basagran bentazon

POST: 1-2 pt/a

Adjuvants: COC. Add 1 qt/a of crop oil concentrate in the final spray mixture.

Crop stage: Applications are generally made from the unifoliate to second trifoliate leaf stage.

Remarks: Soybean are quite tolerant of Basagran but slight leaf yellowing, bronzing, speckling, or burn may occur. Soybean generally outgrow this condition within 10 days. Soybean leaf burn increases when using nitrogen solution, but new soybean growth is normal and crop vigor is not reduced. Because Basagran has contact action, weeds must be thoroughly covered with spray. Do not apply if wind exceeds 10 mph.

Boundary 6.5 EC s-metolachlor + metribuzin

PPI: 1.2-3.0 pt/a; 1.5-1.8 pt/a when followed by a postemergence herbicide program or 1.2-3 pt/a in a one-pass program.

Crop stage: Apply and incorporate into the top 2 inches of soil within 14 days before planting.

Remarks: Controls many annual grass and broadleaf weeds. When used at lower rates, it will provide early season control; late emerging weeds should be controlled with a sequential postemergence herbicide. It can be tank mixed with Python for added velvetleaf control; with FirstRate for added common and giant ragweed and velvetleaf control; with Command for added common ragweed and velvetleaf control; and with Prowl for aid with triazine-resistant weeds. May injure soybean because of the Metribuzin component. The risk of soybean injury increases when soybean are planted less than 1.5 inches deep or when heavy rains follow application. Use should be avoided on soils with less than 0.5% organic matter, on soils with a pH of 7.5 or higher, and in fields where residues of atrazine exist. Do not use on sand regardless of organic matter or on loamy sand with less than 2% organic matter. Limit the rate of Boundary to 1.5 pt/a on soils with a pH above 7. Check the label for a list of metribuzin-sensitive soybean varieties. Can be mixed with liquid fertilizer or impregnated onto certain dry fertilizers for simultaneous applications. If no-till Boundary can be preplant surface applied up to 30 days before planting or preemergence after planting. Higher rates should be used with early preplant applications. It can be tank mixed with glyphosate, Gramoxone, and 2,4-D to control emerged weeds.

Broadaxe XC sulflurazone + S-metolachlor

Burndown rate: 19-38.7 fl oz/a

PPi: 19-38.7 fl oz/a; Rates are based on % organic matter and soil texture. See label for details. For soils with pH greater than 7.2, use the lowest rate for that specific soil texture and organic matter.

Crop stage: Incorporation must be uniform and no deeper than 2 inches.

Remarks: Do not apply greater than 0.375 lb ai/a of sulflurazone or greater than 2.387 lb ai/a metolachlor per season to the field. Do not apply to soils classified as sand with less than 1% organic matter.

PRE: 19-38.7 fl oz/a

Crop stage: Can apply in the fall after September 30th or in the spring. Can be applied up to 3 days after planting but prior to emergence.

Weed timing: If weeds are emerged utilize additional herbicides to suppress these weeds.

Remarks: See PPI.
Cadet

fluthiacet

POST: 0.4-0.9 fl oz/a; 0.4-0.6 fl oz/a in glyphosate mixtures or 0.6-0.9 fl oz/a if applied alone or in other tank mixtures.

Adjuvants: NIS, COC, N, AMS. Add nonionic surfactant at 0.25% or crop oil concentrate at 1-2 pt/a to the spray solution. Add 28% nitrogen solution at 1-2 qt/a or ammonium sulfate at 1-2 lb/a. If mixed with a fully loaded glyphosate, only add ammonium sulfate.

Crop stage: Apply from first trifoliate to full flower stage.

Remarks: Cadet may cause temporary speckling of soybean leaves. Cadet has contact activity and requires good spray coverage with a minimum of 15 gal/a spray volume and 20 psi spray pressure. It is an option when targeting velvetleaf alone or in mixtures or 0.6-0.9 fl oz/a if applied alone or in glyphosate. It can only be applied south of I-90 between La Crosse and Madison and south of I-94 between Madison and Milwaukee. Will provide early season residual control of many annual broadleaf weeds like lambsquarters, pigweed, common ragweed, smartweed, and velvetleaf and suppression of foxtails and crabgrasses. Canopy can be mixed with a preemergence herbicide or followed by a postemergence herbicide for a complete weed control program. Do not use on soils that exceed a soil pH of 7.6. Canopy is rainfast 1 hour after application.

PRE: 2.9 oz/a

Adjuvants: COC, NIS. Add 1% crop oil concentrate. Add 0.25% nonionic surfactant if tank mixing with glyphosate.

Crop stage: Incorporation must be uniform and no deeper than 1-2 inches prior to planting soybean.

Remarks: Cadet can be tank mixed with Asure II, Basagran, FirstRate, glyphosate, Raptor, Resource, or Select Max. Cobra-treated soybean must be thoroughly covered. Use 20-30 gal/a of water with Cobra. Apply at 40-60 psi pressure through flat fan or hollow cone nozzles spaced 20 inches apart.

Canopy EX

chlorimuron + tribenuron

Burndown rate: 1.1 oz/a Canopy EX + 1 pt/a 2,4-D

PPi: 1.1 oz/a Canopy EX + 1 pt/a 2,4-D

Adjuvants: COC, NIS. Apply 1% crop oil concentrate or 0.25% nonionic surfactant, if crop oil concentrate is prohibited by a tank-mix partner.

Crop stage: Apply in the fall or spring at least 7 days before planting soybean.

Remarks: Can only be applied south of I-90 west of Madison and I-94 east of Madison. Provides burndown control of dandelions plus several winter annual broadleaves such as mustards (field pennycress, shepherd’s purse, etc.), common chickweed, henbit, and horseweed. Will provide residual weed control depending on application timing. Other herbicides such as Assure II, glyphosate, Gramoxone, or Metribuzin can be tank mixed to control additional grass or broadleaf weeds. Can add 2,4-D to Canopy EX to improve broadleaf burndown. Do not apply to soils with a pH less than 7.6 and do not apply any additional Classic or Synchrony if the pH exceeds 7.0. Canopy EX is rainfast in 2 hours.

Classic

chlorimuron

POST: 0.5 to 0.75 oz/a if soil pH is less than 7.0 or 0.25-0.33 oz/a when tank mixed with Harmony SG.

Adjuvants: NIS, COC, N, AMS; Add nonionic surfactant at 0.25% to the spray mixture. If droughty, crop oil concentrate at 1.0% (0.5% in Classic + Harmony SG tank mixtures) of spray can be used instead of surfactant.

Crop stage: Can be applied any time after the first trifoliate has opened but no later than 60 days before soybean maturity.

Remarks: Tank mixing Classic with Flexstar, lactofen, or Ultra Blazer will control nightshade and waterhemp and improve control of common ragweed. Classic can be tank mixed with postemergence grass herbicides. Ammonium sulfate is recommended in all Classic plus-glyphosate tank mixtures. Surfactant at 0.25% should be added when the glyphosate formulation allows for this addition. Temporary yellowing and/or retardation of soybean growth may occur within 5-7 days after Classic treatment. Do not apply Classic to soybean that are under stress from weather extremes or injury from another herbicide. Use Classic spray preparations within 24 hours of mixing or product degradation may occur.

Cobra

lactofen

POST: 6.0-12.5 fl oz/a

Adjuvants: COC. Reduced rates of 6-10 fl oz/a, add 1 pt/a crop oil concentrate. Full rate, add crop oil concentrate at 0.25-1% to the spray mixture.

Crop stage: Apply at the 1-2 trifoliate leaf stage to ensure good spray coverage of weeds. Do not apply lactofen within 45 days of soybean harvest or past the R6 stage.

Remarks: Cobra can be tank mixed with Assure II, Basagran, FirstRate, glyphosate, Raptor, Resource, or Select Max. Cobra-treated soybean almost always show some leaf burning, crinkling, and bronzing, especially on the youngest leaves. Soybean generally outgrow this condition. Injury is greatest with crop oil concentrate and increases when adding nitrogen solution or ammonium sulfate. Do not apply Cobra to soybean that are under stress from weather extremes. Because Cobra has contact action, weeds must be thoroughly covered. Use 20-30 gal/a of water with Cobra. Apply at 40-60 psi pressure through flat fan or hollow cone nozzles spaced 20 inches apart.

Dual II Magnum

s-metolachlor + safener

POST: 1-2 pt/a; On soils with an organic matter content between 6 and 20%, use up to 2.5 pt/a.

Crop stage: Apply within 14 days before planting, blending the herbicide into the top 2 inches of soil before seedbed preparation.

Remarks: To broaden the spectrum of weeds controlled, it can be tank mixed with Command, Lorox, Metribuzin, Pursuit, or trifluralin. It is not labeled for use on peat or muck soils. Soybean injury is not a serious problem. S-metolachlor can be mixed with liquid fertilizer for simultaneous application and preplant incorporated applications can also be impregnated onto certain dry fertilizers.

PRE: 1-2 pt/a; On soils with an organic matter content between 6 and 20%, use up to 2.5 pt/a.

Crop stage: Apply after planting, but before weeds and soybean emerge.

Remarks: To broaden the spectrum of weeds controlled, it can be tank mixed with Command, Lorox, Metribuzin, Pursuit, or trifluralin. It is not labeled for use on peat or muck soils. Soybean injury is not a serious problem.

POST: 1-2 pt/a; On soils with an organic matter content between 6 and 20%, use up to 2.5 pt/a.

Crop stage: Apply up to 1.33 pt/a to soybean that have not exceeded the third trifoliate.

Weed timing: Apply before weed emergence as emerged weeds will not be controlled.

Remarks: To broaden the spectrum of weeds controlled, it can be tank mixed with Command,
Lorox, Metribuzin, Pursuit, or trifluralin. On soils with an organic matter content between 6 and 20%, use up to 2.5 pt/a. It is not labeled for use on peat or muck soils. Can be applied as a sequential (PRE/PPI then POST) as long as no more than 2.5 pt/a is applied during any one crop. Soybean injury is not a serious problem. Do not feed forage or hay if treated POST.

Enlist Duo
glyphosate + 2,4-D Choline

Preplant burndown rate: 3.5-4.75 oz/a;
Apply in water at 10-15 gallons per acre of spray solution

Adjuvants: See label or look up allowed adjuvants at www.EnlistTankMix.com

Crop stage: Applications must be made not less than 30 days prior to planting soybean.

Remarks: Provides burndown control of common annual and perennial weeds. Currently only available as a burndown application. Do not use on sandy soils with less than 1% organic matter. List of products that can be tank mixed with Enlist Duo soybean can be found at www.EnlistTankMix.com

Enlite
chlorimuron + flumioxazin + thifensulfuron

Burndown rate: 2.8 oz/a
PRE: 2.8 oz/a

Adjuvants: COC, NIS. Add 1% crop oil concentrate (preferred) or 0.25% nonionic surfactant.

Crop stage: Apply in the fall after soil temperature is less than 50°F or after October 15 or in the spring until planting. Spring applications must be made within 3 days after planting. Do not apply to cracking soybean.

Remarks: Provides burndown control of several broadleaf weeds. Applications in the fall should include 2,4-D or glyphosate for dandelion control. Spring burndown treatments are labeled to control 3-inch-tall weeds like mustards, lambsquarters, pigweed, and smartweed. A tank mix with 2,4-D or glyphosate is recommended to improve control of horseweed and other broadleaf weeds. The residual control from the Valor component fits well in the spring to control lambsquarters, horseweed, nightshade, and pigweeds and to suppress other broadleaf weeds. Annual grasses and giant ragweed will also be suppressed. Burndown treatments should include glyphosate or Assure if control grasses if present. Either fall or spring applications should be followed with a postemergence glyphosate application in Roundup Ready soybean or conventional herbicides for complete weed control. Do not tank mix with Dual, Intoro, or Outlook. For further restrictions on use of other herbicides consult the label.

Envive
chlorimuron + flumioxazin + thifensulfuron

Burndown rate: 2.5 oz/a
PRE: 2.5 oz/a

Adjuvants: COC, NIS. Add 1% crop oil concentrate (preferred) or 0.25% nonionic surfactant.

Crop stage: Apply in the fall after soil temperature is less than 50°F or after October 15 or in the spring until planting. Spring applications must be made within 3 days after planting.

Remarks: Can only be used south of I-90 between La Crosse and Madison and south of I-94 between Madison and Milwaukee. Contains a similar ratio of Valor to Classic as Valor XLT. The higher rate of Classic in Envive limits its use to southern Wisconsin because of potential carryover. For further restrictions on use of other herbicides consult the label.

Extreme
imazethapyr + glyphosate

Burndown rate: 3 pt/a

Adjuvants: NIS, AMS. Add nonionic surfactant at 0.125% to the spray mixture plus ammonium sulfate at 8.5-17 lb/100 gal.

Weed timing: Preplant or preemergence. Apply to annual weeds.

Remarks: Will control emerged weeds and provide residual control of several annual weeds. It can be tank mixed with 2,4-D or pendimethalin if applied before planting. The premix provides an economical way to combine the broad-spectrum burndown activity of glyphosate with the residual activity of Pursuit on several broadleaf weeds.

POST: 3 pt/a

Adjuvants: NIS, AMS. Add nonionic surfactant at 0.125% to the spray mixture plus ammonium sulfate at 8.5-17 lb/100 gal of spray.

Crop stage: Apply before bloom and 85 days before harvest.

Weed timing: In general, apply before weeds are 8 inches tall.

Remarks: Do not apply Extreme if soybean have emerged unless they are Roundup Ready. Extreme may be tank mixed with Outlook to enhance residual grass control. The risk of injury with Extreme is low, but it may cause stunting. Be cautious to avoid drift onto corn or other plants during application. Extreme can also be applied before emergence of conventional soybean as a burndown treatment and can be tank mixed with 2,4-D or Prowl, if applied before planting.

Fierce
flumioxazin + pyroxasulfone

PRE: 3.0-3.75 oz/a

Timing: Preemergence applications must be applied within 3 days of planting.
herbicide treatment for control. Tank mixing with Dual II Magnum, INTRRO, or Outlook would provide both grass and black nightshade control. Control may be reduced if applied to soil with greater than 5% organic matter. Do not apply if steady wind speed exceeds 10 mph.

POST: 0.3-0.6 oz/a
Adjuvants: NIS, COC, N, AMS. Add 0.125-0.25% of nonionic surfactant. Ammonium sulfate at 2 lb/a or 2.5% of 28% nitrogen solution or crop oil concentrate at 1.2% may be added to the spray mixture.

Crop stage: Apply up to the R2 stage.
Remarks: Labeled tank-mix partners include most postemergence broadleaf and grass herbicides. Follow rates and adjuvant recommendations of the tank-mix partner. May antagonize Assure II and Fusion’s activity, so sequential applications of the tank-mix partner. May antagonize herbicides. Follow rates and adjuvant recommendations. Do not apply if steady wind speed exceeds 10 mph. Soybean stunting may occur. With favorable soil moisture and weather conditions, the 4 fl oz/a rate can be used. Fusilade DX can be used for annual grass control. To compensate, the Fusion rate can be increased 4 fl oz/a in tank mixtures. When yellow foxtail, barnyardgrass, woolly cupgrass, sandbur, or crabgrass are a problem, apply Fusion sequentially to postemergence broadleaf herbicides. In sequential applications, apply Fusion 2 or 3 days before or 7 days after the broadleaf herbicide application. Do not apply Fusion to grasses that are stressed from weather extremes or injury from another herbicide.

Gramoxone SL
Burndown rate: 2.0-4.0 pt/a; Apply 2.0-2.5 pt/a when weeds are 1-3 inches tall, 2.5-3.0 pt/a when weeds are 3-6 inches tall, and 3.0-4.0 pt/a when weeds are taller than 6 inches.

Adjuvants: NIS, COC. Add nonionic surfactant at 0.125% or crop oil concentrate at 0.5-1% to the spray mixture. Also add either 1-2.5 gal of 28% nitrogen solution or 8.5 lb of ammonium sulfate/100 gal of spray mixture.

Crop stage: Apply before bloom.
Timing: The maximum leaf stage is 2-6 leaves depending on broadleaf species and rate. See label for specific weeds.

Remarks: Some lambsquarters and velvetleaf may escape control. Tank mixes with Basagran, Classic, FirstRate, glyphosate, Harmony SG, Pursuit, Raptor, Resource, and Synchrony are labeled. Can be tank mixed with all of the postemergence grass herbicides, but it may reduce the activity of the herbicide. Treated soybean almost always show some leaf speckling, crinkling, and bronzing, especially on the youngest leaves, generally outgrowing this condition without reduced crop vigor. Because Flexstar has contact action, weeds must be thoroughly covered with spray. Use 15-20 gal/a of water and 30-60 psi pressure through flat fan or hollow cone nozzles.

Fusilade DX
POST: Apply 4-6 fl oz/a
Adjuvants: COC. Add 0.25% crop oil concentrate.
Crop stage: Apply from emergence until soybean have emerged. If no-till, it can only be used in alternate years.

Timing: Apply before volunteer Roundup Ready corn is 12 inches tall and the 6 fl oz rate if the corn is 12-24 inches tall.

Adjuvants: NIS, N, AMS. Add crop oil concentrate at 0.5-1% or nonionic surfactant at 0.25-0.5% to the spray mixture. Use crop oil concentrate at 1% when treating perennial grasses.

Crop stage: Apply before bloom.
Remarks: Fusion can be tank mixed with most broadleaf herbicides, but antagonism may reduce grass control. To compensate, the Fusion rate can be increased 4 fl oz/a in tank mixtures. When yellow foxtail, barnyardgrass, woolly cupgrass, sandbur, or crabgrass is a problem, apply Fusion sequentially to postemergence broadleaf herbicides. In sequential applications, apply Fusion 2 or 3 days before or 7 days after the broadleaf herbicide application. Do not apply Fusion to grasses that are stressed from weather extremes or injury from another herbicide.

Harmony SG
POST: 0.125 oz/a; Alone or with glyphosate on Roundup Ready soybean.
Adjuvants: NIS, COC, N, AMS. Add nonionic surfactant at 0.125-0.25% or crop oil concentrate at 0.5% to the spray mixture. Also include 2-4 pt/a of 28% nitrogen solution or 1-2 qt/a of 10-34-0 in 20 gal/a of water, only use flat fan nozzles. Do not apply Gramoxone when conditions prevent uniform coverage or when excessive spray drift may occur.
the spray mixture. Ammonium sulfate at 2-4 lb/a may also be used.

Crop stage: Apply after the first trifoliate leaf, but 60 days before harvest.

Remarks: Harmony can be tank mixed with postemergence grass herbicides, Basagran, Classic, Flexstar, or lactofen. Harmony can be tank mixed with glyphosate to increase lambsquarters control in Roundup Ready soybean. Temporary yellowing and/or reduction of soybean growth may occur within 5-7 days after Harmony treatment. Such injury occurs most frequently during hot, humid weather. Do not apply Harmony to soybean that are under stress from weather extremes or injury from another herbicide. Do not tank mix Harmony with organophosphate insecticides or apply Harmony within 14 days before or after such insecticide use.

ACHLOR

PPI: 2.5-3 qt/a
Crop stage: Apply to dry soil within 7 days before planting, blending the herbicide into the top 1-2 inches of soil during seedbed preparation.

Remarks: To broaden the spectrum of weeds controlled, INTRRO can be tank mixed with Command, Lorox, metribuzin, or Pursuit. INTRRO provides better annual weed control on peat or muck soils than other soil-applied herbicides. Soybean injury from INTRRO isn’t a serious problem. Certain dry fertilizers can be impregnated with Intro where the herbicide/fertilizer mixture will be incorporated into the soil before planting.

PRE: 2-3 qt/a; 2 qt/a when followed by glyphosate.

Crop stage: Apply after planting, but within 5 days of the last tillage for weed control.

Remarks: To broaden the spectrum of weeds controlled, INTRRO can be tank mixed with Command, Lorox, metribuzin, or Pursuit. INTRRO provides better annual weed control on peat or muck soils than other soil-applied herbicides. Soybean injury from INTRRO isn’t a serious problem.

LINURON

PPI: 1-2 lb/a; Lower rates of Lorox can be tank mixed with Dual II Magnum, INTRRO, or Outlook to improve grass control.

Crop stage: Apply after planting but before soybean emerge.

Remarks: Lorox is ineffective on peat or muck soils. Risk of soybean injury increases markedly on sandy soils. Do not use Lorox on sand, loamy sand, or any soil with less than 1% organic matter. Plant soybean at least 1.75 inches deep. Even on medium and heavy soils, heavy rainfall following application can leach Lorox to the soybean root zone causing foliar burn and stand reduction. Applications to areas with residual atrazine may cause serious soybean injury.

Marvel

PPI: 5.0-7.25 fl oz; Marvel is NOT labeled for use north of I-94 from the Minnesota state line to Eau Claire and north of Highway 29 from Eau Claire to Green Bay. It can also NOT be used south of that line in Barron, Chippewa, Clark, Door, Dunn, Eau Claire, Kewaunee, Marathon, Menominee, Oconto, Polk, Shawano, and St. Croix counties. See label for annual and biannual rate limits, as they change based on location in Region 3 (southern tier counties) or Region 4 (all other counties not in Region 3 or where use is restricted).

Adjuvants: NIS, OIC, MSO, N, AMS. Add 5.0-5.5% nonionic surfactant or 0.5-1% crop oil concentrate or methylated seed oil plus urea ammonium nitrate at 1-2 qt/a or ammonium sulfate at 2-3 lb/a.

Remarks: Controls many small broadleaf weeds; however, it is a contact herbicide and thorough spray coverage is important for weed control and many weeds greater than 3-4 inches tall will be difficult to control. To improve burndown activity, it can be tank mixed with other burndown herbicides such as glyphosate, glufosinate, paraquat, or 2,4-D. Will also provide some early-season residual control of small seeded broadleaves. However, when tank mixed with other burndown herbicides follow preplant restrictions of tank-mix partners.

OpTill

PPI: 2 oz/a

Crop stage: OpTill can be applied preemergence but prior to soybean cracking. Do not apply OpTill at cracking or later as severe crop injury will occur.

Adjuvants: MSO, N, AMS. Add 1% methylated
seed oil plus 28% nitrogen solution at 2.5% or ammonium sulfate at 8.5 lb/100 gal to maximize burndown activity.

Crop stage: May be applied in the fall prior to first frost or as a preplant or preemergence in the spring.

Remarks: Can be applied preplant but prior to soybean cracking. Additional adjuvants are required to maximize burndown of existing broadleaf weeds at application. Tank-mix partners such as glyphosate or Liberty 280 SL may be required to control larger grasses or broadleaf weeds not on the label. Do not apply at cracking or later as severe crop injury will occur. It will provide good early-season control of most annual grass and broadleaf weeds but may require a planned sequential application for season-long control. The early-season control will provide greater flexibility with the postemergence timing without the risk of yield loss from weed competition. Planting must be delayed by 30 days if applied to sandy soil with less than 2% organic matter. Tank mixing Authority and Valor are prohibited due to crop injury concerns; wait 30 days before sequential application of either product following OpTill. Crop injury may occur if the seed furrows are not properly closed or if the herbicide is washed into the seed furrow.

OpTill PRO saflufenacil + imazethapyr + dimethenamid-P

Burndown rate: 2 oz/a OpTill + 10 fl oz/a Outlook

PRE: 2 oz/a OpTill + 10 fl oz/a Outlook

Crop stage: In the spring apply as a preemergence application up to soybean emergence in most soils; in coarse soils with 2.0% organic matter, wait 30 days between application and planting. Do not apply to emerged soybeans, as injury will result.

Adjuvants: MSO, AMS, N. Add 1% v/v methylated seed oil (MSO) plus either 8.5-17 lb/100 g ammonium sulfate (AMS) or 1.25-2.5 g/100 g urea ammonium nitrate (UAN). Do not use a nonionic surfactant (NIS) in place of MSO, or poor control of broadleaf weeds will result.

Crop stage: For fall applications, apply prior to first killing frost and do not apply to frozen or snow-covered soil. In the spring apply as a preplant or preemergence application up to soybean emergence in most soils; in coarse soils with 2.0% organic matter, wait 30 days between application and planting. Do not apply to emerged soybeans, as injury will result.

Remarks: It is a fall- or spring-applied herbicide for selective burndown and residual weed control prior to soybean emergence in minimum and no-till systems. It may be tank mixed with other burndown herbicides according to the label to increase the spectrum of control. Use of other ALS-inhibiting herbicides, as well as organophosphate or carbamate insecticides, may increase the chance for adverse crop response. Tank mixing with Authority or Valor products are prohibited. Crop injury may occur if the seed furrows are not properly closed or if herbicide is washed into the seed furrow.

Outlook dimethenamid-P

PP1: 10-21 fl oz/a; Up to 24 fl oz/a in two split applications of 8-16 fl oz each at least 14 days apart.

Crop stage: Blend into the top 1-2 inches of soil within 14 days before planting. Preplant-incorporated applications are not recommended on coarse soils with less than 1.5% organic matter.

Remarks: To broaden the spectrum of weeds controlled, Outlook can be tank mixed with Command, Lorox, metribuzin, Prowl, Pursuit, Python, or trifluralin. Adjust the rate according to either soil cation exchange capacity or soil texture and organic matter content. Use 21 fl oz/a of Outlook on all soils with greater than 8% organic matter. Outlook generally doesn’t injure soybean, but long periods of saturated soil may suppress early season soybean growth. Outlook can be impregnated onto certain dry fertilizers for simultaneous application.

PRE: 11-21 fl oz/a; Up to 24 fl oz/a in two split applications of 8-16 fl oz each at least 14 days apart.

Crop stage: Apply after planting, but before weeds emerge.

Remarks: To broaden the spectrum of weeds controlled, Outlook can be tank mixed with Command, Lorox, metribuzin, Prowl, Pursuit, Python, or trifluralin. Adjust the rate according to either soil cation exchange capacity or soil texture and organic matter content. Use 21 fl oz/a of Outlook on all soils with greater than 8% organic matter. Outlook generally doesn’t injure soybean, but long periods of saturated soil may suppress early season soybean growth. Outlook can be impregnated onto certain dry fertilizers for simultaneous application.

Post Plus sethoxydim

POST: 1.5 pt/a

Adjuvants: GAC, N, AMS. Add 1 qt/a of crop oil concentrate. When controlling volunteer corn or crabgrass, include 2-4 qt/a 28% nitrogen solution or 2.5 lb/a ammonium sulfate with crop oil concentrate.

Crop stage: Apply any time, but 75 days before harvest.

Remarks: Post Plus can be tank mixed with most postemergence broadleaf herbicides, but grass control may be reduced. This antagonism can be avoided by applying Post Plus 1 day before or 7 days after the broadleaf herbicide. Soybean injury is not a problem. Do not apply Post Plus to grasses that are stressed from weather extremes or injury from another herbicide. Do not apply if wind exceeds 10 mph.
Prefix s-metolachlor + fomesafen
PPI: 2.0-2.5 pt/a; In southern Wisconsin (south of Hwy 18 west of Madison and south of I-94 east of Madison), the maximum rate is 2.5 pt/a. The maximum is 2 pt/a in the region south of I-94 from the MN state line to Eau Claire and south of and Hwy 29 except for southern Wisconsin area previously mentioned (see label). Use is excluded in excluding Adams, Marquette, Portage, Waupaca, Waushara, and Wood counties.
Crop stage: Apply and incorporate into the top 2 inches of soil within 7 days after application.
Remarks: The 2 pt/a rate is intended to provide early season residual control prior to a post-emergence glyphosate or conventional herbicide treatment. The length and degree of control will depend on the soil texture and organic matter. Full-season control of many weeds may be possible on coarse-textured soil. If the maximum rate of Prefix was soil-applied, do not apply Flexstar postemergence.
PRE: 2.0-2.5 pt/a; In southern Wisconsin (south of Hwy 18 west of Madison and south of I-94 east of Madison), the maximum rate is 2.5 pt/a. The maximum is 2 pt/a in the region south of I-94 and Hwy 29, excluding Adams, Clark, Marathon, Marquette, Portage, Shawano, Waupaca, Waushara, and Wood counties.
Crop stage: Apply after planting, but prior to weed emergence.
Remarks: The 2 pt/a rate is intended to provide early season residual control prior to a post-emergence glyphosate or conventional herbicide treatment. The length and degree of control will depend on the soil texture and organic matter. Full-season control of many weeds may be possible on coarse-textured soil. If the maximum rate of Prefix was soil-applied, do not apply Flexstar postemergence.

Prowl H2O pendimethalin
PPI: 1.5-3.0 pt/a
Crop stage: Apply to dry soil within the several weeks before planting. Incorporate into the top 1-2 inches of soil within 7 days of application.
Remarks: To broaden the spectrum of weed control, it can be tank mixed with Command, Dual II Magnum, INTRRO, metribuzin, or Pursuit. Pendimethalin is ineffective on peat or muck soils. Soybean injury doesn’t appear to be a problem except when applied to wet soils or in areas subject to prolonged flooding. Injury symptoms are stunted soybean plants with swollen stems and inhibited secondary roots. Pendimethalin can be impregnated onto certain dry fertilizers for simultaneous application.

Pursuit imazethapyr
PPI: 4 fl oz/a
Crop stage: Apply to dry soil and blend into the top 1-2 inches of soil up to 45 days before planting.
Remarks: Pursuit is usually tank mixed with a soil-applied herbicide such as Dual II, INTRRO, Outlook, Prowl, or trifluralin to broaden control. Do not tank mix with Command. Do not apply Pursuit more than once per season or the same year as other imazethapyr-containing herbicides. Pursuit is ineffective on peat or muck soils. Risk of soybean injury from Pursuit is minimal but it occasionally causes internode shortening and a reduction in fine root hairs.
PRE: 4 fl oz/a
Crop stage: Apply after planting, but before soybean emerge.
Remarks: Pursuit is usually tank mixed with a soil-applied herbicide such as Dual II, INTRRO, Outlook, Prowl, or trifluralin to broaden control. Do not tank mix with Command. Do not apply Pursuit more than once per season or the same year as other imazethapyr-containing herbicides. Pursuit is ineffective on peat or muck soils. Risk of soybean injury from Pursuit is minimal but it occasionally causes internode shortening and a reduction in fine root hairs.
POST: 4 fl oz/a
Adjuvants: NIS, COC, N, AMS. Add nonionic surfactant at 0.25% to the spray mixture, 1% crop oil concentrate, or 1% methylated seed oil. Also include 1-2 qt/a of either 28-0-0 or 10-34-0 fertilzer solution. Ammonium sulfate at 2.5 lb/a may be substituted for liquid fertilizer.
Crop stage: Apply before bloom and 85 days before harvest.
Weed Timing: Apply before weeds are 3 inches tall. Cocklebur, pigweeds, and shattercane can be controlled up to 8 inches tall.
Remarks: Pursuit can be tank mixed with Basagran, FirstRate, Flexstar, lactofen, or Ultra Blazer to broaden the spectrum of broadleaf weed control. For improved control of volunteer corn and grassy weeds, tank mix with Assure II, Fusion, Poast Plus, or Select Max. However, the effectiveness of the grass herbicide may be reduced due to antagonism from Pursuit. Pursuit can be tank mixed with glyphosate on Roundup Ready soybean or with Outlook for residual grass control. Risk of soybean injury from Pursuit is minimal but it may shorten internodes.

Python WDG flumetsulam
PPI: 0.8-1.33 oz/a
Crop stage: Apply and incorporate into top 2-3 inches of soil within 30 days before planting.
Remarks: At lower labeled rates Python controls lambsquarters, pigweed, and velvetleaf. Higher labeled rates control smartweed and nightshade. Some common and giant ragweed will escape control, even at higher rates. Do not use on peat or muck soils. Soybean have shown good tolerance to Python.
PRE: 0.8-1.33 oz/a
Crop stage: Apply after planting, but before soybean crack or weeds emerge.
Remarks: Can be used as a pre-emergence treatment to control broadleaf weeds prior to a glyphosate treatment in Roundup Ready soybean. Do not use on peat or muck soils. Soybean have shown good tolerance to Python.

Raptor imazamox
POST: 4-5 oz/a; Apply 4 fl oz/a when following a preemergence grass herbicide or 5 fl oz/a when all herbicide applications are postemergence.
Adjuvants: NIS, COC, N, AMS. Add nonionic surfactant at 0.25% to the spray mixture, 1% crop oil concentrate, or 1% methylated seed oil. Also include 1-2 qt/a of either 28-0-0 or 10-34-0 fertilizer solution. Ammonium sulfate at 2.5 lb/a may be substituted for liquid fertilizer.
Crop stage: Apply before bloom and 85 days before harvest.
Remarks: Common ragweed may require a tank mix for complete control. Without a prior preemergence grass herbicide treatment, Raptor may not adequately control barnyardgrass, crambgrass, wild proso millet, or woolly cupgrass. If Raptor is tank mixed with a post-emergence grass herbicide, grass weed control may be reduced. This antagonism can be avoided by applying the grass herbicide 3 days before or 7 days after the application of Raptor. Raptor may be tank mixed with FirstRate to increase control of common and giant ragweed. Cobra, Flexstar, or Ultra Blazer tank mixtures may increase control of waterhemp and ragweed. Tank mixing broadleaf herbicides with Raptor may also reduce its grass control. Raptor may be tank mixed with Outlook for residual grass control. There is a risk that Raptor may cause temporary chlorosis and shortening of internodes.

Resource flumiclorac
POST: 4-12 fl oz/a
Adjuvants: COC. Add 1 qt/a crop oil concentrate when applying Resource alone. Check the Resource label for adjuvant requirements when tank mixing.
Crop stage: Do not apply within 60 days of harvest.
Remarks: Resource is highly effective on velvetleaf. It is less effective on other broadleaf weeds but will suppress small lambsquarters, cocklebur, common ragweed, and pigweed. Resource can be tank mixed at 2-4 fl oz/a with postemergence broadleaf herbicides or glyphosate for added postemergent control. Resource may cause temporary speckling of soybean leaves, but plants quickly outgrow this injury.

Roundup PowerMax glyphosate

Burndown rate: 0.38 lb ae/a-1.5 lb ae/a; Apply 0.38-0.56 lb ae/a for annuals and 0.75-1.5 lb ae/a for quackgrass. See labels for specific rate recommendations.

Adjuvants: AMS. Ammonium sulfate at 8.5-17 lb/100 gal of spray mixture is frequently recommended, especially when tank mixing glyphosate with residual herbicides. Check the label to see if the glyphosate formulation requires additional surfactant.

Weed timing: If preplant, apply to annual weeds less than 6 inches tall or to quackgrass that is 6-8 inches tall and actively growing. Do not include glyphosate in any spray mixture if soybean have emerged, unless they are Roundup Ready. If not, glyphosate can be included as a component of a preplant residual herbicide treatment to provide burndown of existing vegetation. Annual weeds emerging after glyphosate application must be controlled by a residual herbicide or a postemergence herbicide. Where a preplant treatment is made as a split application, include glyphosate with the first application, but only if weed growth is present at the time of treatment. If quackgrass is present, include glyphosate in the second application instead of the first. Glyphosate can be tank mixed with 2,4-D ester for improved annual and perennial broadleaf weed burndown, but must be applied at least 7 days before planting.

Remarks: To control quackgrass, apply 0.75 lb ae/a of glyphosate to 6-10-inch quackgrass if the field will be tilled after application. Delay tillage for 3 days after application. Increase the rate of glyphosate to 1.5 lb ae/a if the field will be no-till planted. Glyphosate can be applied in 28% nitrogen solution rather than in water, but it is not recommended when treating perennials.

POST: 0.75-1.5 lb ae/a

Adjuvants: AMS. Ammonium sulfate may be added at 8.5-17 lb/100 gal.

Crop stage: Apply from soybean emergence to full flower (R2 stage).

Timing: Treat up to 8-inch annual weeds with 0.75 lb ae/a of glyphosate. Larger weeds and perennials require higher rates.

Remarks: Use only on Roundup Ready soybean varieties. Glyphosate can be tank mixed with Assure II, Fusilade DX, Fusion, or Select Max to control volunteer Roundup Ready corn. In drilled soybean with their earlier canopy closure, a single glyphosate application often provides season-long control. We have had good results treating drilled soybean at the 2-trifoliate leaf stage (when weeds are 2-6 inches) with 0.56 lb ae/a glyphosate. Row soybean may require a second application. Be very cautious to avoid glyphosate drift onto corn or other plants during application.

Select Max clethodim

POST: 9-16 oz/a; Use 16 fl oz/a when annual grasses are at the maximum height listed for control.

Adjuvants: NIS, COC, N, AMS. Add nonionic surfactant at 0.25% or crop oil concentrate at 1 qt/a to the spray mixture. Also add ammonium sulfate at 2.5 lb/a or 2 qt/a 28% nitrogen solution.

Crop stage: Apply 60 days before harvest.

Remarks: Select Max at 6 fl oz/a can be tank mixed with glyphosate to control Roundup Ready corn up to 12 inches tall. Higher rates can be used to control taller corn. Select Max can be tank mixed with broadleaf herbicides, but grass control may be reduced. Increased rates should be used with Pursuit and Raptor tank mixtures. This antagonism can be avoided by applying Select Max 1 day before or 7 days after the broadleaf herbicide. When tank mixing, check the label for specific adjuvant options for the mixture. If regrowth of perennial grasses occurs, make a second application of Select Max. Do not apply if wind is greater than 10 mph.

Sequence glyphosate + s-metolachlor

Burndown rate: 2.5-4.0 pt/a

PRE: 2.5-4.0 pt/a; Apply 2.5-4.0 pt/a based on soil texture and weed height.

Adjuvants: AMS. Ammonium sulfate may be added at 8.5-17.0 lb/100 gal.

Crop stage: If preplant or preemergence do not apply if soybean have emerged unless they are Roundup Ready.

Remarks: Will control emerged weeds and provide residual control of annual grass weeds. At 2.5 pt/a provides 0.7 lb ae/a glyphosate; it should be effective on most annual weeds if treated before the 6-inch height. The label has specific rates for individual weed heights. It can be tank mixed with 2,4-D to increase broadleaf burndown activity if applied before planting or other preemergence herbicides. Contains the equivalent of 1.0-1.6 pt/a of Dual II Magnum over the labeled rate range and higher rates will provide greater residual grass control.

POST: 2.5-3.5 pt/a

Adjuvants: AMS. Ammonium sulfate may be added at 8.5-17 lb/100 gal.

Crop stage: Apply from emergence up to 90 days before harvest (90 day PHI).

Timing: Sequence at 2.5 pt/a provides 0.7 lb ae/a glyphosate and is effective on most annual weeds if treated before the 6-inch height. The label has specific rates for individual weed heights.

Remarks: Use only on Roundup Ready soybean varieties. The s-metolachlor component will provide residual annual grass control. It can be tank mixed with Fusion or Fusilade DX to control volunteer Roundup Ready corn or Classic, FirstRate, or Flexstar for added broadleaf control. Sequence may cause some slight leaf crinkle or leaf spotting, but the soybean should rapidly outgrow this symptom. Be cautious to avoid drift onto corn or other plants during application. Do not apply if a preemergence application of metolachlor was previously made.

Sharpen safufenacil

PPI: 1-2 fl oz/a; Using 1 oz/a requires 30 days preplant interval on course soils with 2% organic matter and 0 days on other soils. 1.5 oz/a requires 30 days preplant interval on course soils with 2% organic matter and 14 days preplant on other soils. 2 oz/a requires 44 days preplant interval on course soils with 5% organic matter and 30 days preplant on other soils.

Crop stage: Severe crop injury will occur if applied after crop emergence. Sharpen can be tank mixed with Gramoxone, glyphosate, or Liberty 280 SL to increase burndown activity and to control emerged grasses.

Remarks: Early season broadleaf residual control will be obtained with Sharpen applied at the proper rate for the soil type (up to 2 fl oz/a). Sharpen will require a tank-mix partner to control emerging grasses. A planned sequential herbicide application will be required for season-long broadleaf and grass weed control. Sharpen has good crop tolerance but may cause injury under stressful growing conditions; do not apply to emerged soybean or severe injury will occur. Do not use on sands with less than 3% organic matter and where depth to ground water is 30 feet or less. Sharpen may also be used as a harvest aid. See label for details.

PRE: 1-2 fl oz/a; Applying 1 oz/a requires 30 days preplant interval on course soils with 2% organic matter and 0 days on other soils. 1.5 oz/a requires 30 days preplant interval on course soils with 2% organic matter and 14 days preplant on other soils. 2 oz/a requires 44 days preplant interval on course soils with 2% organic matter and 30 days preplant on other soils.
Crop stage: Severe crop injury will occur if applied after crop emergence. Sharpen can be tank mixed with Gramoxone, glyphosate, or Liberty 280 SL to increase burndown activity and to control emerged grasses.

Remarks: Early season broadleaf residual control will be obtained with Sharpen applied at the proper rate for the soil type (up to 2 fl oz/a). Sharpen will require a tank-mix partner to control emerging grasses. A planned sequential herbicide application will be required for season-long broadleaf and grass weed control. Sharpen has good crop tolerance but may cause injury under stressful growing conditions; do not apply to emerged soybean or severe injury will occur. Do not use on sands with less than 3% organic matter and where depth to ground water is 30 feet or less. Sharpen may also be used as a harvest aid. See label for details.

Sonic

Sulfentrazone + cloransulam

PPi: 6.45-8 oz/a; Reduced rates of 3-4 oz/a are recommended for early-season weed suppression when followed by glyphosate in Roundup Ready soybean. Do not apply to sands with less than 1% organic matter. Do not apply if steady wind speed exceeds 10 mph.

Crop stage: Apply within 14 days and incorporate into the top 1-3 inches of soil.

Remarks: The length of residual activity will depend on the rate used. At lower rates, it will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. At full rates, annual grasses will be suppressed, but will likely need to be controlled postemergence. The seed furrow must be closed prior to applying this premix or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur.

Pre: 6.45-8 oz/a; Reduced rates of 3-4 oz/a are recommended for early-season weed suppression when followed by glyphosate in Roundup Ready soybean. Do not apply to sands with less than 1% organic matter. Do not apply if steady wind speed exceeds 10 mph.

Crop stage: Apply at planting or within 3 days after planting.

Remarks: The length of residual activity will depend on the rate used. At lower rates, it will provide early season broadleaf weed control when followed by glyphosate in Roundup Ready soybean. At full rates, annual grasses will be suppressed, but will likely need to be controlled postemergence. The seed furrow must be closed prior to applying this premix or crop injury may result. Do not apply to cracking or emerged soybean because severe injury will occur. It is now labeled for aerial applications.

Surveil

Cloransulam + flumioxazin

Pre: 2.1-4.2 oz/a

Timing: Apply from 14 days before planting to 3 days after planting.

Remarks: A new premix product that is a mix of Valor and FirstRate, with similar performance except a reduced rotational interval to 10 months for alfalfa. Review the information under FirstRate and Valor for details and precautions.

Synchrony XP

Chlorimuron + thifensulfuron

Post: 0.375 oz/a

Adjuvants: NIS, N, AMS. On conventional varieties, add nonionic surfactant at 0.25% to the spray mixture, plus either 2-4 qt/a of 28% nitrogen solution, 1-2 qt/a of 10-34-0, or 2-4 lb/a of ammonium sulfate. On Roundup Ready soybean, add 0.25% nonionic surfactant when mixed with glyphosate plus ammonium sulfate at 4.25-17 lb/100 gal.

Crop stage: Apply after the first trifoliate leaf stage and 60 days before harvest.

Remarks: At 0.375 oz/a, only pigweed, cocklebur, and sunflower are listed as controlled. Lambsquarters, smartweed, and velvetleaf control can be improved with the addition of 0.06 oz/a of Harmony SG; common ragweed and velvetleaf control can be improved with 0.15 oz/a of FirstRate; and waterhemp, common ragweed, nightshade, and velvetleaf control can be improved with 1 pt/a Flexstar. Synchrony will not control nightshade by itself. Non-STS soybean varieties may be slightly stunted by Synchrony.

Touchdown

Glyphosate

Post: 0.75-3 lb ae/a; Broadcast at 0.75-1.5 lb ae/a/application for a total of 2.25-3 lb ae/a/season in-crop. Use only on Roundup Ready soybean varieties. If preharvest, apply 0.75-3 lb ae/a according to weed species (Touchdown is limited to 0.78 lb ae/a in Roundup Ready soybean).

Adjuvants: AMS. Ammonium sulfate at 8.5-17 lb/100 gal of spray mixture is recommended when treating drought-stressed plants or larger, hard-to-control weeds. Check the label to see if the glyphosate formulation requires additional surfactant.

Remarks: If broadcast, apply from soybean emergence to full flower (R2 stage). Treat up to 8-inch annual weeds with 0.75 lb ae/a of glyphosate. Larger weeds and perennials require higher rates. Roundup Ready soybean are resistant to postemergence-applied glyphosate, but only use formulations labeled for such use. Glyphosate controls emerged grass and broadleaf weeds, but has no residual control. Glyphosate can be tank mixed with Assure II, Fusilade DX, Fusion, or Select Max to control volunteer Roundup Ready corn. (See the remarks section of those herbicides for adjuvant recommendations.) In drilled soybean with their earlier canopy closure, a single glyphosate application often provides season-long control. We have had good results treating drilled soybean at the 2-trifoliate leaf stage (when weeds are 2-6 inches) with 0.56 lb ae/a glyphosate. Row soybean may require a second application. Be very cautious to avoid glyphosate drift onto corn or other plants during application. If using for preharvest, apply at least 7 days before normal soybean harvest, but only after soybean pods have lost all their green color. For best dry down of weeds, wait 14-21 days after application before harvesting soybean. Glyphosate can be applied to actively growing weeds as a preharvest cleanup for the control of perennial weeds such as quackgrass (0.751.5 lb ae/a), Canada thistle (1.5-2.25 lb ae/a), bindweeds (2.25-3 lb ae/a), and hemp dogbane (3 lb ae/a). Apply in 10-20 gal/a of water and adjust nozzle height for good weed coverage. If applying by air, mix up to 0.75 lb ae/a of glyphosate in 3-5 gal/a of water. Do not apply if weeds have been damaged by frost. Perennial weeds should only be treated if at least two-thirds of the plants' leaves are green and physiologically active. Touchdown is limited to 1 qt/a as a pre-harvest treatment on Roundup Ready soybean, but 6 qt/a can be applied in conventional soybean.

Treflan

Trifluralin

PPi: 1-2 pt/a of 4 lb/gal formulation or equivalent. Crop Stage: Apply to dry soil within the several weeks before planting. Incorporate into the top 2-3 inches of soil within 24 hours after application. Prompt incorporation is important.

Remarks: Treflan does not control black nightshade, cocklebur, wild mustard, common ragweed, smartweed, or velvetleaf. Treflan can be tank mixed with Command or metribuzin. It is ineffective on peat or muck soils. Soybean injury doesn’t appear to be a problem except when trifluralin is applied to wet soils or in areas subject to prolonged flooding. Treflan can cause stunted soybean plants with swolled crowns and inhibited secondary roots. It can be mixed with liquid fertilizers or impregnated onto certain dry fertilizers for simultaneous application.

Trivence

Chlorimuron + flumioxazin + metribuzin

Pre/Byardburn rate: 6 oz/a: Apply no more than 2.5 oz/a if treating at least 1 day prior to
planting. Rates of up to 3.75 oz/a can be used if applying at least 7 days prior to planting.

Adjuvants: COC, NIS. Add crop oil concentrate or methylated seed oil at 1% unless tank mix herbicide label doesn't allow then use a nonionic surfactant at 0.25%.

Crop stage: Anytime prior to or up to 3 days after soybean planting. Do not apply to soybean that have either cracked or emerged as severe injury will occur.

Weed timing: Tank mix other herbicides to control, if weed size exceeds 3 inches.

Remarks: Provides selective burndown plus residual weed control of many broadleaf weeds and partial control of grasses. For season-long control of grasses POST treatments will be needed. Do not tank mix or apply any Organophosphate insecticides at planting or within 14 days of planting or injury may result. See label for additional restrictions with respect to other herbicide uses in fields treated with this product.

Ultra Blazer

- **acifluorfen**
- **POST:** 1.0–1.5 pt/a
- **Adjuvants:** NIS, COC, N, AMS. Add nonionic surfactant at 0.125–0.25%, crop oil concentrate at 1–2 pt/a, 2–4 qt/a of 28% nitrogen solution, or 2.5 lb/a ammonium sulfate to the spray mixture.
- **Crop stage:** Apply in the 1–2-trifoliate leaf stage to ensure good spray coverage of weeds. Apply 50 days before harvest.
- **Timing:** The maximum leaf stage is 2 or 4 leaves for most weeds listed for control.
- **Remarks:** Ultra Blazer can be tank mixed with Basagran, Classic, FirstRate, glyphosate, Harmony SG, Pursuit, Raptor, Resource, and the post-emergence grass herbicides. Soybean treated with Ultra Blazer almost always show some leaf speckling, crinkling, and bronzing, especially on the youngest leaves. Soybean generally outgrow this condition. Do not apply to soybean that are under stress from weather extremes or injury from another herbicide. Because Ultra Blazer has contact action, weeds must be thoroughly covered with spray. Use 10–20 gal/a of water and a maximum of 40 psi pressure through flat fan or hollow cone nozzles spaced 20 inches apart. Do not apply if wind exceeds 15 mph.

Valor SX

- **flumioxazin**
- **PRE:** 2–3 oz/a
- **Crop stage:** Apply within 3 days after planting.
- **Remarks:** Valor is not labeled to control weeds on soils with greater than 5% organic matter. Valor can be tank mixed with FirstRate, Lorox, or Python for additional broadleaf control or Com-
Zidua
pyroxasulfate

PRE: 1.0-3.5 oz/a; Rate based on soil type and application timing. Preemergence following planting at 1.5-2.1 oz/a for coarse-, 2.0-3.0 for medium-, and 2.5-3.5 oz/a for fine-textured soils.
Crop stage: Do not apply to soybean between the cracking and V1 growth stages as severe injury may occur.
Remarks: Zidua can be applied with water or various fertilizer combinations; see label for details. Zidua can be mixed with one or more herbicide products according to both the Zidua and tank-mix partner labels.
POST: 1.0-3.5 oz/a; Rate based on soil type and application timing. Apply 1.0-2.1 oz/a for coarse-, 1.5-3.0 for medium-, and 2.0-3.5 oz/a for fine-textured soils between V1 and V3 soybean.
Remarks: Zidua does not provide postemergence weed control. Zidua can be applied with water or various fertilizer combinations; see label for details. Zidua can be mixed with one or more herbicide products according to both the Zidua and tank-mix partner labels. Zidua does not require any spray additives; however, spray adjuvants may be needed with tank-mix partners and should be added accordingly.

Warrant Ultra
acetochlor + fomesafen

PRE: 48-60 fl oz/a; South of highway 18 between Prairie Du Chien and Madison and interstate 94 between Madison and Milwaukee can apply up to 60 fl oz/a. South of interstate 94 from Minnesota to Eau Claire and south of highway 29 from Eau Claire to Green Bay are limited to 48 fl oz/a or prohibited from using (see label for details). Apply 48, 48-55, or 48-60 fl oz/a, respectively, for coarse-, medium-, and fine-textured soil with less than 1.5% organic matter. Apply 48-60 fl oz/a for coarse-, medium-, and fine-textured soil with more than 1.5% organic matter. Warrant Ultra is not registered for use in Adams, Marquette, Portage, Waupaca, Waushara, and Wood counties or in northern Wisconsin.
Crop stage: Warrant can be applied any time preemergence; mechanical incorporation is not recommended.
Remarks: This product may be tank-mixed with Prowl, imazethapyr, metribuzin, or pendimethalin. Follow the most restrictive label directions among products tank mixed.
POST: See PRE above.
Adjuvants: NIS, COC. No adjuvants are needed unless being used to burndown existing weeds. Add nonionic surfactant at 0.25-0.5% or crop oil concentrate at 0.5-1% to the spray mixture.
Crop stage: Warrant Ultra should be applied before the R2 growth stage, but the optimal time is when soybean are V2-V3.
Remarks: This product may be tank-mixed a range of products including roundup ready soybean. Consult the label for tank mix options. Follow the most restrictive label directions among products tank mixed.
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Rate/a</th>
<th>Provides the equivalent of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afforia 50.8% DG</td>
<td>3 oz</td>
<td>2.5 oz Valor SX 51DF + 0.3 oz Express 50SG + 0.3 oz Harmony 50SG</td>
</tr>
<tr>
<td>Anthem</td>
<td>6 oz/a</td>
<td>1.84 oz of Zidua and 0.42 oz of Cadet</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>3 oz/a</td>
<td>1.84 oz of Zidua and 0.42 oz of Cadet</td>
</tr>
<tr>
<td>Authority Assist</td>
<td>6 fl oz</td>
<td>5 fl oz Spartan 4L + 2 fl oz Pursuit 2S</td>
</tr>
<tr>
<td>Authority Elite</td>
<td>25 fl oz</td>
<td>4.5 fl oz Spartan 4F + 1.3 pt Dual II MAGNUM</td>
</tr>
<tr>
<td>Authority First/Sonic</td>
<td>3 oz</td>
<td>3.7 fl oz Spartan 4L + 0.28 oz FirstRate 84DF</td>
</tr>
<tr>
<td>Authority MTZ</td>
<td>12 oz</td>
<td>4.3 fl oz Spartan 4L + 4.3 oz Metribuzin 75DF</td>
</tr>
<tr>
<td>Authority Maxx</td>
<td>5 oz/a</td>
<td>6.2 oz Spartan 4L + 0.8 oz Classic</td>
</tr>
<tr>
<td>Boundary 6.5EC</td>
<td>1.5 pt</td>
<td>1.03 pt Dual II MAGNUM 7.64EC + 5 oz Metribuzin 75DF</td>
</tr>
<tr>
<td>Canopy EX 29.5DF</td>
<td>1.1 oz</td>
<td>1.0 oz Classic 25DF + 0.15 oz Express 50SG</td>
</tr>
<tr>
<td>Canopy 75DF</td>
<td>2.25 oz</td>
<td>1 oz Classic 25DF + 1.9 oz Metribuzin 75DF</td>
</tr>
<tr>
<td>Enlist Duo</td>
<td>4.75 pt</td>
<td>0.95 lb ae 2,4-D + 1.01 lb ae glyphosate</td>
</tr>
<tr>
<td>Enlite</td>
<td>2.8 oz</td>
<td>2 oz Valor SX + 0.3 oz Classic 25DF + 0.5 oz Harmony SG</td>
</tr>
<tr>
<td>Envive</td>
<td>2.5 oz</td>
<td>1.4 oz Valor SX + 0.9 oz Classic 25DF + 0.14 oz Harmony SG</td>
</tr>
<tr>
<td>Extreme 2.17SC</td>
<td>3 pt</td>
<td>4 fl oz Pursuit 2S + 0.56 lb ae glyphosate</td>
</tr>
<tr>
<td>Fierce 76WDG</td>
<td>3 oz</td>
<td>2 oz Valor SX 51DF + 1.5 oz Zidua 85WG</td>
</tr>
<tr>
<td>Fierce XLT</td>
<td>4 oz</td>
<td>2 oz Valor SX + 1 oz Classic +1.5 oz Zidua</td>
</tr>
<tr>
<td>Flexstar GT 3.5</td>
<td>3 pt</td>
<td>1 lb ae glyphosate + 1 pt Flexstar 1.88EC</td>
</tr>
<tr>
<td>Fusion 2.56EC</td>
<td>8 fl oz</td>
<td>8.7 oz Fusilade DX 2EC + 6.7 fl oz Option II 0.67EC</td>
</tr>
<tr>
<td>Marvel 35L</td>
<td>7 fl oz</td>
<td>0.88 fl oz Cadet 0.91EC + 0.66 pt Flexstar 1.88ME</td>
</tr>
<tr>
<td>OpTill PRO (co-pack)</td>
<td>2 oz + 10 fl oz</td>
<td>2 oz OpTill + 10 oz Outlook</td>
</tr>
<tr>
<td>Prefix</td>
<td>2 pt</td>
<td>1.1 pt Dual II MAGNUM 7.64EC + 1 pt Flexstar</td>
</tr>
<tr>
<td>Sequence 5.25EC</td>
<td>2.67 pt</td>
<td>1 pt Dual II MAGNUM 7.64EC + 0.75 lb ae glyphosate</td>
</tr>
<tr>
<td>Synchrony XP 28.4DF</td>
<td>0.375 oz</td>
<td>0.32 oz Classic 25DF + 0.05 oz Harmony 50SG</td>
</tr>
<tr>
<td>Trivence 61.3% DG</td>
<td>6 oz</td>
<td>0.94 oz Classic 25DF + 1.5 oz Valor SX 51DF + 3.6 oz Metribuzin 75DF</td>
</tr>
<tr>
<td>Valor XLT</td>
<td>2.5 oz</td>
<td>1.5 oz Valor SX + 1 oz Classic 25DF</td>
</tr>
<tr>
<td>Verdict</td>
<td>5 fl oz</td>
<td>1 fl oz Sharpen + 4.2 fl oz Outlook</td>
</tr>
</tbody>
</table>
Table 3-3. Forage and grain harvest intervals for soybean herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>PHI grain (days)</th>
<th>PHI forage/grazing/silage (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afforia</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Anthem</td>
<td>70</td>
<td>not permitted</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Assure II</td>
<td>80</td>
<td>not permitted</td>
</tr>
<tr>
<td>Authority Assist</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Authority Elite</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Authority First</td>
<td>65</td>
<td>not permitted</td>
</tr>
<tr>
<td>Authority MTZ</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Authority Maxx</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Autumn Super 51 WDG</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Basagran</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Broadaxe XC</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Boundary 6.5 EC</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Cadet</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Canopy Blend</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Canopy EX</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Classic</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Cobra</td>
<td>45</td>
<td>not permitted</td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>0</td>
<td>0(^b)</td>
</tr>
<tr>
<td>Enlist Duo</td>
<td>30</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Enlite</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Envive</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Extreme</td>
<td>85</td>
<td>not permitted</td>
</tr>
<tr>
<td>Fierce</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Fierce XLT</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>FirstRate</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>Flexstar</td>
<td>45</td>
<td>not permitted</td>
</tr>
<tr>
<td>Flexstar GT 3.5</td>
<td>45</td>
<td>not permitted</td>
</tr>
<tr>
<td>Fusilade DX</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Fusion</td>
<td>before bloom</td>
<td>not permitted</td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>15</td>
<td>see label</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>INTRRO</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>70</td>
<td>not permitted</td>
</tr>
<tr>
<td>Lorox</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Marvel</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>OpTill</td>
<td>85</td>
<td>not permitted</td>
</tr>
<tr>
<td>OpTill PRO</td>
<td>85</td>
<td>not permitted</td>
</tr>
<tr>
<td>Outlook</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Panoflex</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Phoenix</td>
<td>45</td>
<td>not permitted</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Prefix</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>Pursuit</td>
<td>85</td>
<td>not permitted</td>
</tr>
<tr>
<td>Python</td>
<td>85</td>
<td>not permitted</td>
</tr>
<tr>
<td>Raptor</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>7</td>
<td>25(^c)</td>
</tr>
<tr>
<td>Select Max</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Sequence</td>
<td>90</td>
<td>not permitted</td>
</tr>
<tr>
<td>Sharpen</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>Sonic</td>
<td>65</td>
<td>not permitted</td>
</tr>
<tr>
<td>Synchrony XP</td>
<td>60</td>
<td>not permitted</td>
</tr>
<tr>
<td>Surveil</td>
<td>65</td>
<td>not permitted</td>
</tr>
<tr>
<td>Touchdown</td>
<td>7</td>
<td>25(^c)</td>
</tr>
<tr>
<td>Treflan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trivence</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>50</td>
<td>not permitted</td>
</tr>
<tr>
<td>Valor SX</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Valor XLT</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Verdict</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Vida</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>Warrant</td>
<td>0</td>
<td>not permitted</td>
</tr>
<tr>
<td>Warrant Ultra</td>
<td>45</td>
<td>Not permitted</td>
</tr>
<tr>
<td>Zidua</td>
<td>0</td>
<td>not stated</td>
</tr>
</tbody>
</table>

\(^a\) Labels may have changed after this table was prepared. Consult current labels to verify the information.
\(^b\) Apply 90 days prior to harvest and do not graze or feed treated forage.
\(^c\) 14 days if less than 23 fl oz/a are used.
Table 3-4. Rainfree period and adjuvants required for postemergence soybean herbicides

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Hours rainfast</th>
<th>Nonionic surfactant</th>
<th>Crop oil concentrate</th>
<th>Nitrogen additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afforia</td>
<td>1</td>
<td>0.25%</td>
<td>1% COC or MSO</td>
<td></td>
</tr>
<tr>
<td>Anthem</td>
<td>4</td>
<td>0.25%</td>
<td>1-2 pt/a COC or MSO</td>
<td></td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>4</td>
<td>0.25%</td>
<td>1-2 pt/a COC or MSO</td>
<td></td>
</tr>
<tr>
<td>Assure II</td>
<td>1</td>
<td>0.25%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Basagran+</td>
<td>4</td>
<td>1 qt/a</td>
<td>or</td>
<td>28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
</tr>
<tr>
<td>Cadet</td>
<td>4</td>
<td>0.25%</td>
<td>1–2 pt/a plus</td>
<td>28% N at 1–2 qt/a or AMS at 1–2 lb/a may be added</td>
</tr>
<tr>
<td>Classic</td>
<td>1</td>
<td>0.25%</td>
<td>or 1% if hot, dry</td>
<td>Also add 28% N at 2–4 qt/a or AMS at 2–4 lb/a for velvetleaf</td>
</tr>
<tr>
<td>Cobra+</td>
<td>0.5</td>
<td>0.25% if high RH</td>
<td>or 0.25–1.0%</td>
<td>28% N at 1 gal/a or AMS at 2–4 lb/a plus NIS or COC</td>
</tr>
<tr>
<td>Extreme</td>
<td>1</td>
<td>0.125%</td>
<td>plus</td>
<td>AMS at 2.5 lb/a or 28% N at 1–2 qt/a</td>
</tr>
<tr>
<td>Fierce</td>
<td>1</td>
<td>0.25%</td>
<td>or 1–2 pt/a COC or MSO</td>
<td></td>
</tr>
<tr>
<td>FirstRate</td>
<td>2</td>
<td>0.125–0.25%</td>
<td>or 1.2%</td>
<td>Add 28% N at 2.5% or AMS at 2 lb/a when using nonionic surfactant</td>
</tr>
<tr>
<td>Flexstar</td>
<td>1</td>
<td>0.25–0.5%</td>
<td>or 0.5–1.0%</td>
<td>28% N at 2.5% or AMS at 10 lb/100 gal</td>
</tr>
<tr>
<td>Flexstar GT</td>
<td>1</td>
<td>0.125–0.25%</td>
<td>plus</td>
<td>28% N at 2.5% or AMS at 10–34-0 at 1–2 qt/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>Fusilade DX</td>
<td>1</td>
<td>0.25%</td>
<td></td>
<td>AMS at 8.5–17.0 lb/100 gal may be added</td>
</tr>
<tr>
<td>Fusion</td>
<td>1</td>
<td>0.25–0.5%</td>
<td>or 0.5–1.0%</td>
<td>28% N at up to 4% may be added</td>
</tr>
<tr>
<td>Gramoxone SL - preharvest</td>
<td>0.5</td>
<td>0.25%</td>
<td>or 1%</td>
<td></td>
</tr>
<tr>
<td>Harmony SG</td>
<td>1</td>
<td>0.25–0.5%</td>
<td>or 0.5% if cool, dry plus</td>
<td>28% N at 2–4 qt/a or 10-34-0 at 1–2 qt/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marvel</td>
<td>1</td>
<td>0.25–0.5%</td>
<td>or 0.5–1.0%</td>
<td>28% UAN at 1–2 qt/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>Phoenix</td>
<td>1</td>
<td>0.125–0.25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poast Plus</td>
<td>1</td>
<td>1 qt/a</td>
<td></td>
<td>28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
</tr>
<tr>
<td>Pursuit</td>
<td>1</td>
<td>0.25%</td>
<td>or 1% COC or MSO</td>
<td>28% N or 10-34-0 at 1–2 qt/a or AMS at 2.5 lb/a</td>
</tr>
<tr>
<td>Raptor</td>
<td>1</td>
<td>0.25%</td>
<td>or 1% COC or MSO</td>
<td>28% N or 10-34-0 at 1–2 qt/a or AMS at 2.5 lb/a</td>
</tr>
<tr>
<td>Resource</td>
<td>1</td>
<td>1 qt/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundup</td>
<td>0.5</td>
<td></td>
<td>AMS at 8.5 to 17 lb/100 gal</td>
<td></td>
</tr>
<tr>
<td>PowerMAX</td>
<td></td>
<td></td>
<td>AMS at 2.5 lb/a</td>
<td></td>
</tr>
<tr>
<td>Select Max</td>
<td>1</td>
<td>0.25%</td>
<td>or 1 qt/a</td>
<td>AMS at 2.5 lb/a or AMS at 2–4 lb/a</td>
</tr>
<tr>
<td>Sequence</td>
<td>—</td>
<td></td>
<td>AMS at 8.5 to 17 lb/100 gal</td>
<td></td>
</tr>
<tr>
<td>Synchrony XP</td>
<td>1</td>
<td>0.25% if non-STS variety or 1% if STS variety plus</td>
<td>28% N at 2–4 qt/a or 10-34-0 at 1–2 qt/a or AMS at 2–4 lb/a</td>
<td></td>
</tr>
<tr>
<td>Touchdown</td>
<td>—</td>
<td></td>
<td>AMS at 8.5 to 17 lb/100 gal</td>
<td></td>
</tr>
<tr>
<td>Trivence</td>
<td>1</td>
<td>0.25%</td>
<td>or 1% COC or MSO</td>
<td></td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>4</td>
<td>0.125–0.25%</td>
<td>or 1–2 pt/a</td>
<td>28% N at 2–4 qt/a or AMS at 2.5 lb/a</td>
</tr>
</tbody>
</table>

Abbreviations:
AMS = ammonium sulfate; COC = crop oil concentrate; MSO = methylated seed oil; N = Nitrogen; NIS = nonionic surfactant; RH = relative humidity; STS = sulfonylurea-tolerant

+a Add COC for lambsquarters and common ragweed control, add a nitrogen additive for velvetleaf control, or add both if all three weeds are present.

*b Adjust adjuvant type and rate based on RH. See label for recommendations.

+c Add a nitrogen additive plus COC when controlling volunteer corn or large crabgrass.
Soybean insect management

Insecticides suggested in this section are intended as a guide to assist you in selecting chemical insect control options. While suggestions provide an overview of product registrations for specific field crop insect pests, this guide is not intended as an exhaustive label source. Product inclusion or omission does not imply endorsement by the University of Wisconsin-Extension. Proper and safe insecticide use requires great care and strict adherence to the most current label directions. Label changes and occasional-use cancellations may have occurred since the writing of this publication.

Insecticides applied at pest insect economic thresholds help control insect pests, but they also kill beneficial insect predators and parasitoids that are important in biological control. Insecticides such as Sevin XLR Plus (carbaryl) are hazardous to honeybees. For these and all insecticides, follow label directions. Where required by label, notify local beekeepers when using such products and do not apply or allow product to drift onto blooming crops and/or weeds when bees are foraging in the area to be treated.

See the discussion on reducing insecticide hazards to bees in Forage Insect Management for more information.

Insect pests

Bean leaf beetle

Bean leaf beetle population densities have increased in the Midwest following recent mild winters. Although pod feeding has been noted as far north as Chippewa County, defoliation and disease transmission (bean pod mottle virus) is of greater concern in the southernmost counties.

Adult beetles are 1/4 inches long, about the size of lady beetles. Wing covers are typically light yellow with a black margin and four black spots. Variations include crimson wing covers with spots or light yellow wing covers with no spots. There is always a black triangle behind the “neck” region (prothorax). Beetles readily drop from the plant if they detect disturbance.

Adults lay eggs in the soil next to soybean stems. Larvae hatch about 1 week later and feed on roots and stems. Their root feeding is not believed to be of economic importance. First-generation adults appear in July, peaking during the late vegetative and early reproductive stages of soybean growth. Second-generation adults can be found from late August to mid-September, when they feed on leaves and pods. This second generation can cause significant crop damage. Beetles may clip developing pods from the plant or graze on the outer layer of the pod, leaving only a thin layer of tissue. Diseases can enter these damaged areas, and the seeds will be discolored, shrunk, and moldy.

Scout for overwintered beetles beginning shortly after soybean emerge. Count the number of beetles on each plant sampled and
obtain a field average. Check again when first-crop alfalfa harvest is underway, as the activity may force beetles to move to soybean. Consult table 3-5 for guidance on when to treat.

Scout for first and second-generation bean leaf beetle using an insect sweep net. Scout each field and each variety within a field separately as beetles sometimes prefer one variety over another. Scouting is no longer necessary after pods reach the R7 (yellow pod) stage.

Consult tables 3-6a, 3.6b and 3-7 for guidance on when to treat for first and second generation adults, respectively. Pod clipping is typically worse during dry weather as beetles move from feeding on leaves to feeding on pods. Inspect dropped pods for signs of feeding damage (as opposed to abortion caused by drought stress).

If the beetle population is less than the economic threshold, scout the field again 5 days later. Stop scouting when beetle counts start to decline, soybean pods begin to turn yellow, or the field is sprayed.

Treatment thresholds for the prevention of bean pod mottle virus are not available.

Grasshoppers

Grasshoppers could be a problem during dry years. If nymphs are numerous in grassy areas, such as fencerows and roadsides adjacent to soybean, spray these areas before grasshoppers spread through the soybean field. If blooming weeds are present, notify nearby beekeepers before using an insecticide and only apply between 4 p.m. and nightfall, when bees are least likely to be foraging and exposed. Insecticidal control is most effective when used before grasshoppers are mature.

Green cloverworms

Green cloverworm overwinters in the southern US, migrating north in the spring. Females lay eggs singly on the underside of soybean leaves. There are six larval instars. Fully-grown larvae are approximately 1 inch long and pale green with two horizontal stripes along each side of the body. Larvae have three pairs of legs in the middle of the body, three pairs near the head, and one pair at the hind end of the body. Two generations occur in northern states.

Defoliation due to green cloverworm should be considered together with the damage inflicted by other defoliating insects to make a management decision. Defoliation estimates should be based on the whole plant, not just the upper canopy. Management is recommended if defoliation reaches 30% before bloom and 15-20% between bloom and pod fill. Verify that green cloverworms are present before treating.

Japanese beetle

Japanese beetle adults are about 1/2 inches long and 3/8 inches wide, with metallic, copper-colored wing covers, and a green thorax and head. Adults emerge in late June, feed on a wide range of host plants and can

<table>
<thead>
<tr>
<th>Control</th>
<th>$7</th>
<th>$8</th>
<th>$10</th>
<th>$12</th>
<th>$15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5/bu</td>
<td>23.0</td>
<td>26.2</td>
<td>32.6</td>
<td>39.0</td>
<td>48.6</td>
</tr>
<tr>
<td>$6/bu</td>
<td>19.3</td>
<td>22.0</td>
<td>27.3</td>
<td>32.6</td>
<td>40.6</td>
</tr>
<tr>
<td>$7/bu</td>
<td>14.6</td>
<td>16.6</td>
<td>20.3</td>
<td>24.6</td>
<td>30.6</td>
</tr>
<tr>
<td>$8/bu</td>
<td>11.8</td>
<td>13.4</td>
<td>16.6</td>
<td>19.8</td>
<td>24.6</td>
</tr>
<tr>
<td>$9/bu</td>
<td>9.2</td>
<td>10.5</td>
<td>12.9</td>
<td>15.4</td>
<td>19.1</td>
</tr>
<tr>
<td>$10/bu</td>
<td>7.0</td>
<td>8.5</td>
<td>10.2</td>
<td>12.7</td>
<td>16.9</td>
</tr>
<tr>
<td>$11/bu</td>
<td>5.8</td>
<td>7.2</td>
<td>9.0</td>
<td>11.0</td>
<td>15.1</td>
</tr>
<tr>
<td>$12/bu</td>
<td>4.9</td>
<td>6.0</td>
<td>7.8</td>
<td>9.9</td>
<td>13.3</td>
</tr>
<tr>
<td>$13/bu</td>
<td>4.1</td>
<td>5.2</td>
<td>7.0</td>
<td>9.0</td>
<td>12.3</td>
</tr>
<tr>
<td>$14/bu</td>
<td>3.3</td>
<td>4.3</td>
<td>5.8</td>
<td>7.8</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Source: Dr. Erin W. Hodgson, Extension Entomologist, Iowa State University

Table 3-6b. Bean leaf beetle threshold for second generation adults (per 20 sweeps)

<table>
<thead>
<tr>
<th>Control</th>
<th>$10</th>
<th>$11</th>
<th>$12</th>
<th>$13</th>
<th>$14</th>
<th>$15</th>
<th>$16</th>
<th>$17</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5/bu</td>
<td>4.45</td>
<td>4.89</td>
<td>5.34</td>
<td>5.78</td>
<td>6.22</td>
<td>6.67</td>
<td>7.11</td>
<td>7.56</td>
</tr>
<tr>
<td>$6/bu</td>
<td>3.89</td>
<td>4.28</td>
<td>4.67</td>
<td>5.06</td>
<td>5.45</td>
<td>5.84</td>
<td>6.22</td>
<td>6.61</td>
</tr>
<tr>
<td>$7/bu</td>
<td>3.46</td>
<td>3.8</td>
<td>4.15</td>
<td>4.50</td>
<td>4.84</td>
<td>5.19</td>
<td>5.53</td>
<td>5.88</td>
</tr>
<tr>
<td>$8/bu</td>
<td>3.11</td>
<td>3.42</td>
<td>3.73</td>
<td>4.05</td>
<td>4.36</td>
<td>4.67</td>
<td>4.98</td>
<td>5.29</td>
</tr>
<tr>
<td>$9/bu</td>
<td>2.83</td>
<td>3.11</td>
<td>3.40</td>
<td>3.68</td>
<td>3.96</td>
<td>4.24</td>
<td>4.53</td>
<td>4.81</td>
</tr>
<tr>
<td>$10/bu</td>
<td>2.59</td>
<td>2.85</td>
<td>3.11</td>
<td>3.37</td>
<td>3.63</td>
<td>3.89</td>
<td>4.15</td>
<td>4.41</td>
</tr>
<tr>
<td>$11/bu</td>
<td>2.39</td>
<td>2.63</td>
<td>2.87</td>
<td>3.11</td>
<td>3.35</td>
<td>3.59</td>
<td>3.83</td>
<td>4.07</td>
</tr>
<tr>
<td>$12/bu</td>
<td>2.22</td>
<td>2.45</td>
<td>2.67</td>
<td>2.89</td>
<td>3.11</td>
<td>3.33</td>
<td>3.56</td>
<td>3.78</td>
</tr>
</tbody>
</table>

Source: Dr. Erin W. Hodgson, Extension Entomologist, Iowa State University
move to soybean, where feeding results in leaf defoliation. During July and August, adults lay eggs in grass and turf, soybean fields, and, to a lesser extent, cornfields. Eggs hatch out into small white grubs that feed on grass roots until fall temperatures cool. Third instar grubs move down in the soil profile and are inactive during winter. In early spring, grubs feed, pupate, and then emerge from the soil as adults in late June.

Adults feed on soybean leaf tissue between leaf veins resulting in a skeletonized or lace-like appearance. The treatment threshold for Japanese beetle in soybean is based on the percentage of leaf defoliation, not the number of beetles per plant. Treatment should be considered at 30% leaf defoliation pre-bloom and 20% defoliation bloom to pod fill.

It is easy to overestimate defoliation percentage; it often looks worse than it is. Use the soybean leaf defoliation guide in this section to help determine the extent of damage by defoliating insects. Be sure to assess defoliation on the entire plant, not just the top leaves. Scout leaf defoliation throughout the field, not just at the field edges, where Japanese beetle aggregation and feeding can appear more concentrated. Field edge/border treatment may be sufficient if damage is confined to this area; scout the field to assess whether a whole-field treatment is required. Beetles present in the field when treated with a foliar insecticide will be killed, but beetles moving into treated fields after application can re-infest.

Potato leafhopper

Large populations of potato leafhopper can pose a threat to soybean fields. The soybean’s hairy leaves and stems usually protect it from leafhopper damage. But during years with abnormally high leafhopper populations or in fields with varieties that are less hairy, scout field to make sure the crop is not threatened. Damage appears as yellowish patches on the leaves, and leaf crinkling and cupping are usually noted. The crinkling and cupping look similar to herbicide injury. Extensive feeding by potato leafhopper can stunt plants.

Examine the leaves and stems to take whole-plant counts on plants that are 1 foot or less in height. Take samples in several areas of a field. For plants taller than 1 foot, use a 15-inch-diameter sweep net to sample the fields. Research indicates this is more accurate than taking whole plant samples. To complete one sweep, move the net in one, continuous, straight-line motion through the top 15 inches of foliage of the row from one side of your body through the foliage in the row to the other side of your body. Continue this process until 20 sweeps have been taken in an area and take no less than five sets of 20 sweeps in a field to estimate the population density. For solid-seeded beans, cover the same area that you would for 30-inch rows.

If an average of two leafhoppers are found per plant in fields with fewer than five sets of 20 sweeps in a field to estimate the population density. For solid-seeded beans, cover the same area that you would for 30-inch rows.

Seedcorn maggot

The seedcorn maggot overwinters as a pupa. Adult flies emerge in late spring around the time that soybean fields are being planted. Females lay eggs in fields with high levels of organic matter. Decaying weeds and crop residue in freshly tilled fields or application of livestock manure will make a field more attractive to egg-laying flies. Eggs hatch within a week. The white, tapered, legless maggots attack germinating seeds, feeding on the cotyledons.

Seedlings may emerge with brown feeding scars on the cotyledons or they may have no cotyledons (such shoots are called “snakeheads”). Damage typically occurs in fields with an abundance of organic matter (manure or decaying plant matter) and tends to be worse when cold, wet weather slows germination.

There are no economic thresholds for seedcorn maggot. Preventative planter-box seed treatment (e.g., Kernel Guard Supreme) or commercial seed treatments (e.g., Cruiser-Maxx) are available when planting soybean to fields with high organic matter.

Slugs

“Slug” is a common name given to a group of terrestrial organisms in the phylum Mollusca and are often referred to as “snails without a shell”. Slugs are soft-bodied, legless, slimy and may be light to dark colored. Most slugs are herbivorous and will feed on a variety of broadleaf and grass plants including corn and soybean. Slugs may be found in small grains and alfalfa, however, rarely are they of economic importance. Feeding may be of economic importance under no-till conditions and/or high weed pressure.

Life stages may not always be synchronized, allowing for various life stages to be present at the same time. It is possible for slugs to overwinter as adults, juveniles and eggs. However, in cold winters
without snow cover, eggs offer the best chance of survival. Slug development, life cycle and overwintering survival has not been well researched in Wisconsin.

Slugs have a “rasp-like” mouthpart called a radula and damage soybean plants by scraping off leaf tissue. Slugs feed nocturnally and occasionally on cool, cloudy days. During daylight hours they hide under soil clods and plant debris.

Initiate scouting for slugs in field areas with a history of slug feeding and or fields with weed or crop residue. Look through debris for eggs, juveniles and/or adults in early spring when soybean are emerging. Record percentage of plants affected, degree of defoliation and identify those field areas where slug activity is present. Economic thresholds have not been established.

When slug populations are heavy, soybean stand loss is possible. Reducing crop residue through primary or secondary tillage, including row cleaners for strip-tillage, can be effective. However, many growers with slug problems may be committed to reduce or no-tillafe because of conservation plans. Early planting may give soybean an early start and might be able to outgrow some slug damage. Slugs have several natural enemies including ground and rove beetles, centipedes, spiders and several other invertebrate predators. Insecticides do not control slugs. Consider use of a bait if preventive measures are ineffective.

Soybean aphid

Aphid identification and life cycle. Soybean aphids (*Aphis glycines*) are about 1/16 -inch long and green to yellowish-green in color. They are the only aphid species known to infest and reproduce on soybean in the U.S. Early in the growing season, populations are found predominately on the underside of new leaves. As the season progresses, colonies can be found on leaves within the canopy, moving to stems and petioles when populations are high.

The soybean aphid life cycle is complex, with both sexual and asexual phases, depending on the time of year and the host plant. They overwinter in the egg stage on buckthorn, the aphid’s only known overwintering host. From spring to late summer, the aphids are all female and give birth to live females, allowing for exponential population growth. In the spring, winged females migrate from buckthorn to soybean, where multiple generations are produced. During the summer, both winged and wingless forms can be found on soybean. The winged aphids fly to other soybean fields to colonize. In the fall, male and female winged aphids migrate back to buckthorn where mating and egg laying occurs.

Aphids use piercing-sucking mouthparts to remove plant sap. Feeding damage results in stunting and yield loss. They can also transmit soybean viruses as they probe and feed between infected and uninfected plants. In addition, they excrete a sugary substance referred to as “honeydew.” If aphid populations are high, affected plants may take on a sooty appearance late in the summer as mold grows on the excrement.

Summer migrants (winged females) seem to prefer late-planted soybean, rather than early-planted soybean fields. Expect higher infestations on soybean planted after early June compared to soybean planted between late April and mid-May.

Natural enemies (predators and parasitic wasps) are an important component of soybean aphid management. Predators such as lady beetles (larvae and adults), green lacewings (larvae), and minute pirate bugs (nymphs and adults) consume soybean aphids. Parasitic wasps lay eggs inside aphids. The developing wasp larva kills the host from within. The adult wasp emerges, leaving behind a hollowed-out shell referred to as an aphid “mummy.” Parasitized aphids are tan to dark brown and stick to the underside of soybean leaves. Another natural control agent is a fungal pathogen that can cause an epidemic in the soybean aphid population.

Soybean aphid treatment decisions. Treatment decision guidelines are summarized as follows:

- Avoid treating soybean aphids when they first appear in a field. Insecticide applications to control low and nondamaging populations will also kill beneficial insects, allowing surviving aphids and migrants to more readily repopulate the field. Soybean aphids reproduce much faster than lady beetles and other beneficial insects. Thus, early-season treatments can lead to higher-populations than if the field had not been sprayed.

- Scout fields weekly to determine the rate of population increase. Begin intensive scouting no later than the mid-vegetative stages of soybean growth, typically around mid- to late-June. Count the number of aphids present on 20-30 plants per field. Examine the entire plant for aphids, paying close attention to the upper leaves and stems where aphids congregate. Be sure to sample plants throughout the field to obtain a representative sample. Calculate the average number of aphids per plant based on the total number of plants sampled. The UW Nutrient and Pest Management program has developed a handy card to help with scouting and counting. The Visual Guide for Soybean Aphid Scouting is available at ipcm.wisc.edu/download/pubsPM/sba2010-web.pdf

Continue monitoring throughout the R5 pod development growth stage as aphids move down stems and colonies become distributed throughout the canopy.
Regular field visits are critical as populations can increase to economically damaging levels within several days. However, keep in mind that the presence of soybean aphids does not mean that populations will necessarily reach damaging levels. A number of factors play a role in regulating populations: natural enemies (predators and parasitic wasps), temperature (aphids reproduce fastest between 68 and 77°F), planting date, aphid fungal disease, soybean growth stage, degree of plant stress (e.g., drought), and possibly, soybean variety. Regular scouting will help determine how these factors are influencing aphid growth rates under certain field conditions. Monitor soybean aphids through the R5 growth stage.

- Treat when approximately 80% of the field has reached an average of 250 aphids per plant AND the population is actively increasing. University trials have found that the best control and yield response occurs when plants are treated between beginning bloom (R1) and beginning seed (R5). Once pods have reached full seed (R6), it is too late to protect yield and treatment is not recommended. For pictures and descriptions of soybean growth stages, see Reproductive Soybean Development Stages and Soybean Aphid Thresholds at fyi.uwex.edu/fieldcroppathology/files/2010/12/aphid_thresholds.pdf

Research and scouting updates are posted regularly during the growing season in the Wisconsin Crop Manager newsletter (ipcm.wisc.edu/wcm). For more information about regional aphid population developments, contact your county Extension agent. Other valuable sources of information include the University of Wisconsin Soybean Plant Health website (fyi.uwex.edu/fieldcroppathology/soybean_pests_diseases) and the North Central Soybean Research Program website (www.ncsrp.com).

Insecticide application methods. Proper insecticide spraying methods often are more important than the selection of a particular insecticide for control of soybean aphid because most labeled foliar products are very effective.

To optimize foliar coverage, growers should increase pressure (40 psi), increase carrier (20 gpa of water), and use small droplet-size nozzles.

Complete coverage is important for optimum aphid control because soybean aphids feed on the undersides of leaves. Soybean aphid research indicates that aerial and ground applications of foliar-applied insecticides provides comparable efficacy of soybean aphid control, as long as pressure, carrier volume, and droplet size are optimized (source: Management Recommendations for Soybean Aphid in the United States. Hodgson, E.W. et al. DOI: dx.doi.org/10.1603/IPM11019).

Stink bugs

Two species of stink bugs—the green stink bug (Acrosternum hilare) and the brown stink bug (Euschistus spp.)—may be found in Wisconsin soybean fields in August. Stink bugs feed in clusters on plants along field edges, becoming quite noticeable as plant leaves turn yellow. Occasionally populations may be high.

Color is the chief distinction between the two species. Stink bug adults have a shield-shaped body, with pointed “shoulders.” Green stink bug adults are bright green with black bands on their antennae; adult brown stink bugs are a speckled brown. Nymphs are rounder than adults, roughly resembling a beetle. Green stink bug nymphs are multicolored (black, green, yellow, and red markings), while brown stink bugs nymphs are copper-brown.

Both nymphs and adults have piercing-sucking mouthparts that they use to penetrate the pod and suck plant fluids. Punctures can be found as small brown or black spots. Young seeds may be deformed, undersized, and possibly aborted under heavy stink bug pressure; older seeds can be discolored or shriveled. Feeding damage may also indirectly delay plant maturity.

In early August, as soybean pods begin to fill, scout five different areas of the field taking 20 samples at each location. Use sweep nets for drilled narrow-row beans. For wide-row plantings, place a light-colored cloth between rows and shake plants to dislodge bugs from the canopy. Count both nymphs and adults in the sample total. Calculate stink bugs per sweep (or per row foot) based on the average of all samples taken throughout the field.

Stink bug thresholds in seed beans are lower than in grain soybean. In wide-row plantings, thresholds range from 1-3 bugs/foot of row. For narrow-row plantings, the threshold is 20 bugs/100 sweeps for seed beans and 40 bugs/100 sweeps for grain soybean.

Thistle caterpillar

(painted lady butterfly)

The painted lady, an orange and brown mottled butterfly, is noted for periods of great abundance followed by periods of great scarcity, probably due to natural control. It is strongly migratory, explaining its appearance in northern areas such as Wisconsin. The butterfly causes no damage to cultivated crops.

The larval stage, called the thistle caterpillar, is usually first noticed feeding on thistles. Subsequent generations occurring in late July and August can be found in soybean in large enough numbers to cause concern. The spiny caterpillars have a mottled yellowish-green and black body with a yellow stripe running the length. The spines are also yellowish.

Thistle caterpillars form a loose silk webbing in the upper three or four
leaves where they feed. The black granular-appearing material found in the webbing is fecal matter (frass). Most defoliation occurs during the last two stages of larval development, when larvae are 3/4 to 1-1/4 inches long. During the reproductive stages, soybean can withstand 20% defoliation without an economic loss in yield. In the vegetative stage (prebloom), plants can withstand up to 30% defoliation before the yield loss is economically damaging.

Two-spotted spider mite

Two-spotted spider mite can become serious during hot dry weather. Adults are tiny (about 0.016 inch), yellow-green with eight legs and dark spots on either side of their oval bodies. Magnification (a 10X hand lens) is often necessary to clearly see spider mite adults, nymphs, and eggs. Eggs are round, white to light yellow, and laid on the underside of leaves. In northern states, populations overwinter as adult females in sheltered field margin areas. Most years, adequate rainfall and a fungal pathogen keep the spider mites in check. During outbreaks, however, spider mites reproduce quickly with multiple overlapping generations. Eggs hatch in 2-4 days, nymphs develop in 2-4 days, and adults can live up to 21 days. Each generation is completed in 4-14 days, with the fastest developmental rates occurring when temperatures exceed 91°F.

Spider mites damage plants by piercing the cells and sucking sap. Mites often go undetected until damage is severe in part because of their tiny size and because plants are drought stressed. Initially, leaves are discolored with tiny white or yellow specks (stippling). Leaves turn from green to brown and may fall off under heavy infestations. Webbing is often found on the undersides of leaves. Damage is often more severe along field edges where mites have migrated from adjacent fields, grasses, weeds, or in drier areas of the field.

Check the upper, middle, and lower canopy for damage as well as for the presence of live mites and webbing on the undersides of leaves. Estimate the percentage of soybean leaf surface damaged (stippling, discoloration). Tap plants onto a white sheet of paper to dislodge mites from the plant. If present, you will see black specks moving slowly on the surface. If injury is evident within the field, there is a potential for economically damaging populations within 1-2 weeks. Monitor the entire field to determine whether spot treatment or whole field treatment is appropriate.

No specific economic threshold has been developed for two-spotted spider mite in soybean. Treatment may be warranted if:
- Mites are present between bloom (R1) and pod fill (R5);
- 15% or more leaf area on plants area discolored and stippled with leaves yellowing;
- Live mites are present; and
- Hot, dry weather is expected to continue.

Refer to table 3-7 for treatment decision guidelines for the Upper Midwest soybean growing region. Treatment may be delayed if cooler temperatures and high humidity are expected. Although rainfall reduces the risk of damaging spider mite populations, thunderstorms alone cannot be relied upon to eliminate infestations, particularly if rains arrive after establishment of large mite populations and are followed by continued hot, dry conditions.

Table 3-7. Treatment decision guidelines for two-spotted spider mites

<table>
<thead>
<tr>
<th>Presence of mites</th>
<th>Damage</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barely detected on leaves in dry locations or on edges of fields.</td>
<td>Barely detectable.</td>
<td>Treatment not necessary.</td>
</tr>
<tr>
<td>Easily detected on leaves in dry locations or on edges of fields. Difficult to find within field.</td>
<td>Foliage is green, but stippling injury is detectable on undersides of leaves of some plants.</td>
<td>Treatment not necessary but keep monitoring.</td>
</tr>
<tr>
<td>All plants are infested.</td>
<td>All plants exhibit some stippling, even on healthy leaves. Some speckling and discoloration of lower leaves. Field margins and dry areas have most damage.</td>
<td>Rescue treatment is warranted, especially if many immatures and eggs are present.</td>
</tr>
<tr>
<td>All plants heavily infested.</td>
<td>Discolored and wilted leaves easily found throughout the field. Severe damage evident.</td>
<td>Effective rescue treatment may save field.</td>
</tr>
<tr>
<td>Extremely high numbers present.</td>
<td>Field discolored, leaves drying down. Significant foliage and stand loss.</td>
<td>Rescue treatment may not save field. However, new growth may appear if treated.</td>
</tr>
</tbody>
</table>

Source: Excerpted from Ohio State University and Michigan State University
Insecticide suggestions for soybean pests

Bean leaf beetle
Consult tables 3.5, 3.6a, and 3.6b for thresholds

Acephate 90 Prill
Rate: 0.83 - 1.1 lbs/a
Active ingredient: acephate
IRAC code: 1B
Preharvest interval (days): 14; Do not graze or cut vines for hay or forage.
Maximum rate: Do not apply more than 1.66 lbs/a/season

Alias 4F
Rate: 1.5 fl oz/a
Active ingredient: imidacloprid
IRAC code: 4A
Preharvest interval (days): 21
Maximum rate: 4.5 fl oz/a (0.14 lb ai/a)/year

Ambush 2EC
Rate: 3.2-6.4 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 60 for grain
Maximum rate: 0.4 lb ai/a/season
Do not graze treated areas or harvest for hay or forage.

Asana XL
Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.2 lb ai/a/season
Do not feed or graze livestock on treated fields.

Baythroid XL
Rate: 0.8-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, 15 days for hay and green forage
Maximum rate: 11.2 fl oz/a/season

Belay
Rate: 3.0-6.0 fl oz
Active ingredient: clothianidin
IRAC code: 4A
Preharvest interval (days): 21 for grain
Maximum rate: 0.2 lb ai/a/season
Do not make foliar applications in fields treated with a neonicotinoid insecticide seed treatment within 45 days after planting. Do not graze or feed soybean forage and hay to livestock.

Besiege
Rate: 5.0-8.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced
Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Cruiser SFS
Rate: 1.28 fl oz/100 lb seed
Active ingredient: thiamethoxam
IRAC code: 4A
Maximum rate: 37.8 g ai/a/season
Do not apply a neonicotinoid insecticide within 45 days of planting seed treated with Cruiser SFS.

Declare 1.25CS
Rate: 0.77-1.28 fl oz/a
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 2.1-6.4 fl oz/a
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC
Rate: 1.5-2.4 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 8.5 fl oz/a (0.1 lb ai/a)/season
Do not allow livestock to graze treated forage or feed treated hay to livestock.

Dimethoate (several)
Rate: See label (rate varies by formulation)
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): Consult label
Maximum rate: Consult label

Endigo ZC
Rate: 4.0-4.5 fl oz
Active ingredient: lambda-cyhalothrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb ai (12.8 oz formulated)/a/season
Do not make applications less than 30 days apart.
Fastac EC
Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC
Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Hero
Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 0.14 lb ai/a (0.081 lb/a acetamiprid + 0.059 lb/a bifenthrin or 10.0 oz/a of Justice insecticide)/season
Do not graze or use cut forage or hay as an animal feed.

Justice
Rate: 2.5-3.0 fl oz
Active ingredient: bifenthrin, acetamiprid, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 0.14 lb total ai/a (0.081 lb/a acetamiprid + 0.059 lb/a bifenthrin or 10.0 oz/a of Justice insecticide)/season
Do not graze or feed soybean forage, straw, or hay to livestock.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
Rate: 3.0 - 4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 2.8-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

NipsIt INSIDE
Rate: 1.28 fl oz/100 lb seed
Active ingredient: clothianidin
IRAC code: 4A
Preharvest interval (days): none stated
Maximum rate: 0.20 lb ai/a/season, regardless of type of application (seed treatment or foliar)
Do not graze or feed soybean forage and hay to livestock.

Paradigm
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Silencer
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 0.06 lb ai (0.48 pt/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Skyraider
Rate: 2.1-6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21
Maximum rate: Do not apply more than 18 fl oz/a of Skyraider/year. Do not apply more than 0.14 lb ai/a of imidacloprid/year. Do not apply more than 0.3 lb ai/a of bifenthrin/year. Do not apply at intervals less than 30 days.

Stallion
Rate: 5.0-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 28
Maximum rate: 35.25 fl oz/a (0.075 lb/a zeta-cypermethrin + 0.75 lb/a chlorpyrifos)/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Do not allow livestock to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.
Maximum rate: Do not apply more than 6 pt (2.82 lb ai) of Vulcan/a/season. Do not make more than 3 applications/season of Vulcan insecticide or other product containing chlorpyrifos. Do not apply last two treatments closer than 10 days apart.

Warrior II
Rate: 0.96-1.60 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 3.84 fl oz/a or 0.24 pt/a (0.06 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Cutworm
No thresholds established

Ambush 2EC
Rate: 3.2-6.4 fl oz
Active ingredient: permethrin
Asana XL

Rate: 5.8-9.6 fl oz

Active ingredient: esfenvalerate

IRAC code: 3A

Preharvest interval (days): 21

Maximum rate: 0.2 lb ai/a/season

Do not feed or graze livestock on treated fields.

Baythroid XL

Rate: 0.8-1.6 fl oz

Active ingredient: beta-cyfluthrin

IRAC code: 3A

Preharvest interval (days): 21 for grain, 15 days for hay and green forage

Maximum rate: 11.2 fl oz/a/season

Belt 45C

Rate: 2.0-3.0 fl oz/a

Active ingredient: flubendiamide

IRAC code: 28

Preharvest interval (days): 14 for seed, 3 for forage and hay

Maximum rate: 6.0 fl oz/a/year

Besiege

Rate: 5.0-8.0 fl oz

Active ingredient: lambda-cyhalothrin, chlorantraniliprole

IRAC code: 3A, 28

Preharvest interval (days): 30

Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade ZEC

Rate: 2.1-6.4 fl oz/a

Active ingredient: bifenthrin

IRAC code: 3A

Preharvest interval (days): 18

Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced

Rate: 11.0-26.0 fl oz

Active ingredient: chlorpyrifos, lambda-cyhalothrin

IRAC code: 1B, 3A

Preharvest interval (days): 30

Maximum rate: 59 fl oz/a/season

Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Declare 1.25CS

Rate: 0.77-1.28 fl oz/a

Active ingredient: gamma-cyhalothrin

IRAC code: 3A

Preharvest interval (days): 45

Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC

Rate: 1.0-1.5 fl oz

Active ingredient: deltamethrin

IRAC code: 3A

Preharvest interval (days): 21

Maximum rate: 8.5 fl oz/a (0.1 lb ai/a)/season

Do not allow livestock to graze treated forage or feed treated hay to livestock.

Endigo ZC

Rate: 3.5-4.0 fl oz

Active ingredient: lambda-cyhalothrin, thiamethoxam

IRAC code: 3A, 4A

Preharvest interval (days): 30

Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a

Active ingredient: bifenthrin

IRAC code: 3

Preharvest interval (days): 18

Maximum rate: Do not apply more than 0.3 lb ai (12.8 ounces formulated)/a/season. Do not make applications less than 30 days apart.

Fastac EC

Rate: 1.3-3.8 fl oz

Active ingredient: alpha-cypermethrin

IRAC code: 3A

Preharvest interval (days): 21

Maximum rate: 11.4 fl oz/a/season

Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Endigo ZC

Rate: 3.5-4.0 fl oz

Active ingredient: lambda-cyhalothrin, thiamethoxam

IRAC code: 3A, 4A

Preharvest interval (days): 30

Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Hero

Rate: 2.6-6.1 fl oz

Active ingredient: zeta-cypermethrin, bifenthrin

IRAC code: 3A

Preharvest interval (days): 21

Maximum rate: 41.2 oz or 0.40 lb ai/a/season

Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Justice

Rate: 3.0-5.0 fl oz

Active ingredient: bifenthrin, acetamiprid

IRAC code: 3A, 4A

Preharvest interval (days): 30

Maximum rate: 0.14 lb total ai/a (0.081 lb/a acetamiprid + 0.059 lb/a bifenthrin or 10.0 oz/a of Justice insecticide)/season

Do not graze or use cut forage or hay as an animal feed.

Leverage 360

Rate: 2.8 fl oz

Active ingredient: cyfluthrin, imidacloprid

IRAC code: 3A, 4A

Preharvest interval (days): 21 for seed, 15 for hay and green forage

Maximum rate: 9.0 fl oz/a (0.07 lb ai/a beta-cyfluthrin + 0.14 lb ai/a imidacloprid)/season

Lorsban Advanced

Rate: 1.0-2.0 pt

Active ingredient: chlorpyrifos

IRAC code: 18

Preharvest interval (days): 28

Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season

Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang

Rate: 1.4-4.3 fl oz

Active ingredient: zeta-cypermethrin

IRAC code: 3A
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 1.28-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Silencer
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Skyraider
Rate: 2.1-6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21
Maximum rate: Do not apply more 18 fl oz/a of Skyraider/year. Do not apply more than 0.14 lb ai/a of imidacloprid/year. Do not apply more than 0.3 lb ai/a of bifenthrin/year. Do not apply at intervals less than 30 days.

Stallion
Rate: 3.75-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 28
Maximum rate: 35.25 fl oz/a (0.075 lb/a zeta-cypermethrin + 0.75 lb/a chlorpyrifos)/season
Do not feed or graze livestock on treated fields.

Baythroid XL
 Rate: 2.0-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, 15 days for hay and green forage
Maximum rate: 11.2 fl oz/a/season

Besiege
Rate: 8.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced
Rate: 6.0-13.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season

Declare 1.25CS
Rate: 1.28-1.54 fl oz/a
Active ingredient: gamma-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC
Rate: 1.5-2.4 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21

Grasshopper
Treat when migration from adjacent areas begins, and populations are heavy (more than 30% defoliation before bloom or 20% between bloom and pod fill).
Maximum rate: 8.5 fl oz/a (0.1 lb ai/a)/season
Do not allow livestock to graze treated forage or feed treated hay to livestock.

Dimethoate (several)
Rate: See label (rate varies by formulation).
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): Consult label
Maximum rate: Consult label

Endigo ZC
Rate: 4.0-4.5 fl oz
Active ingredient: lambda-cyhalothrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb ai (12.8 oz formulated)/a/season
Do not make applications less than 30 days apart.

Fastac EC
Rate: 3.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC
Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Hero
Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 41.2 oz or 0.40 lb ai/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Leverage 360
Rate: 2.8 fl oz
Active ingredient: cyfluthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21 for seed, 15 for hay and green forage
Maximum rate: 9.0 fl oz/a (0.07 lb ai/a beta-cyfluthrin + 0.14 lb ai/a imidacloprid)/season

Lorsban Advanced
Rate: 0.5-1.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
Rate: 3.4 - 4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 3.2-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm
Rate: 3.2-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Silencer
Rate: 3.2-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/season

Skyraider
Rate: 2.1-6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21,
Maximum rate: Do not apply more 18 fl oz/a of Skyraider/year. Do not apply more than 0.14 lb ai/a of imidacloprid/year. Do not apply more than 0.3 lb ai/a of bifenthrin/year. Do not apply at intervals less than 30 days.

Stallion
Rate: 5.0-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 28
Maximum rate: 35.25 fl oz/a (0.075 lb/a zeta-cypermethrin + 0.75 lb/a chlorpyrifos)/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Vulcan
Rate: 0.5-1 pt/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28;
Do not allow livestock to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Maximum rate: Do not apply more than 6 pt (2.82 lb ai) of Vulcan/a/season. Do not make more than 3 applications/season of Vulcan insecticide or other product containing chlorpyrifos. Do not apply last two treatments closer than 10 days apart.
Warrior II
Rate: 1.60-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 3.84 fl oz/a or 0.24 pt/a (0.06 lb ai/a/season)
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Green cloverworm
Usually requires 12 or more half-grown worms per foot of row and 15% defoliation during pod set and pod fill stages.

Acephate 90 Prill
Rate: 0.83 -1.1 lb/a
Active ingredient: acephate
IRAC code: 1B
Preharvest interval (days): 14; Do not graze or cut vines for hay or forage.
Maximum rate: Do not apply more than 1.66 lb/a/season

Ambush 2EC
Rate: 3.2-6.4 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 60 for grain
Maximum rate: 0.4 lb ai/a/season
Do not graze treated areas or harvest forage or hay.

Asana XL
Rate: 2.9–5.8 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.2 lb ai/a/season
Do not feed or graze livestock on treated fields.

Baythroid XL
Rate: 0.8-1.6 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, 15 days for hay and green forage
Maximum rate: 11.2 fl oz/a/season

Belt 4SC
Rate: 2.0-3.0 fl oz/a
Active ingredient: flubendiamide
IRAC code: 28
Preharvest interval (days): 14 for seed, 3 for forage and hay
Maximum rate: 6.0 fl oz/a/year

Besiage
Rate: 5.0–8.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC
Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced
Rate: 6.0–13.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Declare 1.25CS
Rate: 0.77–1.28 fl oz/a
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC
Rate: 1.0–1.5 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 8.5 fl oz/a (0.1 lb ai/a)/season
Do not allow livestock to graze treated forage or feed treated hay to livestock.

Endigo ZC
Rate: 3.5-4.0 fl oz
Active ingredient: lambda-cyhalothrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb ai (12.8 oz formulated)/a/season. Do not make applications less than 30 days apart.

Fastac EC
Rate: 2.8–3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC
Rate: 2.8–3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days) 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Hero
Rate: 2.6–6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days) 21
Maximum rate: 41.2 oz or 0.40 lb ai/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Intrepid 2F
Rate: 4.0–8.0 fl oz
Active ingredient: methoxyfenozide
Silencer
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/season

Leverage 360
Rate: 2.8 fl oz
Active ingredient: cyfluthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21 for seed, 15 for hay and green forage
Maximum rate: 9.0 fl oz/a (0.07 lb ai/a beta-cyfluthrin + 0.14 lb ai/a imidacloprid)/season

Lorsban Advanced
Rate: 0.5-1.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
Rate: 3.0-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 2.8-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Japanese beetle (adult)
30% leaf defoliation before bloom and 20% defoliation between bloom and pod fill.

Ambush 2EC
Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 60 for grain
Maximum rate: 0.4 lb ai/a/season
Do not graze treated areas or harvest for forage or hay.

Alias 4F
Rate: 1.5 fl oz/a
Active ingredient: imidacloprid
IRAC code: 4A
Preharvest interval (days): 21
Maximum rate: 4.5 fl oz/a (0.14 lb ai/a)/year
Do not graze treated areas or harvest for forage or hay.

Asana XL
Rate: 5.8-9.6 fl oz
Active ingredient: esfenvalerate
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.2 lb ai/a/season
Do not feed or graze livestock on treated fields.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, 15 days for hay and green forage
Maximum rate: 11.2 fl oz/a/season

Belay
Rate: 3.0-6.6 fl oz
Active ingredient: clothianidin
IRAC code: 4A
Preharvest interval (days): 21 for grain
Maximum rate: 0.2 lb ai/a/season; Do not make foliar applications in fields treated with a neonicotinoid insecticide seed treatment within 45 days after planting. Do not graze or feed soybean forage and hay to livestock.

Besiege
Rate: 8.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Leverage 360

Rate: 2.8 fl oz
Active ingredient: cyfluthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21 for seed, 15 for hay and green forage
Maximum rate: 9.0 fl oz/a (0.07 lb ai/a beta-cyfluthrin + 0.14 lb ai/a imidacloprid)/season

Mustang

Rate: 3.0 - 4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx

Rate: 2.8 - 4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm

Rate: 3.2 - 3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Silencer

Rate: 3.2 - 3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Skyraider

Rate: 2.1 - 6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21
Maximum rate: Do not apply more than 18 fl oz/a of Skyraider/year. Do not apply more than...
Do not feed or graze livestock on treated fields.

Baythroid XL
Rate: 2.0–2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, 15 days for hay and green forage
Maximum rate: 11.2 fl oz/a/season

Belay
Rate: 3.0–6.0 fl oz
Active ingredient: clothianidin
IRAC code: 4A
Preharvest interval (days): 21 for grain
Maximum rate: 0.2 lb ai/a/season

Do not make foliar applications in fields treated with a neonicotinoid insecticide seed treatment within 45 days after planting.

Do not graze or feed soybean forage and hay to livestock.

Besse
Rate: 5.0–8.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besee or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC
Rate: 2.1–6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Declare 1.25CS
Rate: 0.77–1.28 fl oz/a
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC
Rate: 1.5–2.4 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): Consult label
Maximum rate: Consult label

Dimethoate (several)
Rate: See label (rate varies by formulation).
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): Consult label
Maximum rate: Consult label

Endigo ZC
Rate: 3.5–4.0 fl oz
Active ingredient: lambda-cyhalothrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES
Rate: 2.1–6.4 fl oz/a
Active ingredient: chlorpyrifos
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb
active ingredient (12.8 oz formulated)/a/season. Do not make applications less than 30 days apart.

Fastac EC
- Rate: 2.8-3.8 fl oz/a
- Active ingredient: alfa-cypermethrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin
- IRAC code: 3A
- Preharvest interval (days): 21
- Maximum rate: 11.4 fl oz/a/season

Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC
- Rate: 2.8-3.8 fl oz/a
- Active ingredient: alfa-cypermethrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin, lambda-cyhalothrin
- IRAC code: 3A
- Preharvest interval (days): 21
- Maximum rate: 11.4 fl oz/a/season

Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Lorsban Advanced
- Rate: 1.0-2.0 pt/a
- Active ingredient: chlorpyrifos
- IRAC code: 1B
- Preharvest interval (days): 28
- Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season

Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
- Rate: 3.0 - 4.3 fl oz/a
- Active ingredient: zeta-cypermethrin
- IRAC code: 3A
- Preharvest interval (days): 21
- Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
- Rate: 2.8-4.0 fl oz/a
- Active ingredient: zeta-cypermethrin
- IRAC code: 3A
- Preharvest interval (days): 21
- Maximum rate: 24 oz/a (0.15 lb ai/a)/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

NipsIt INSIDE
- Rate: 1.28 fl oz/100 lb seed
- Active ingredient: clothianidin
- IRAC code: 4A
- Maximum rate: 0.20 lb ai/a/season, regardless of type of application (seed treatment or foliar)

Do not graze or feed soybean hay forage and hay to livestock.

Paradigm
- Rate: 1.92-3.2 fl oz/a
- Active ingredient: lambda-cyhalothrin
- IRAC code: 3A
- Preharvest interval (days): 20; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Stallion
- Rate: 5.0-11.75 fl oz/a
- Active ingredient: zeta-cypermethrin, chlorpyrifos
- IRAC code: 3A, 1B
- Preharvest interval (days): 28
- Maximum rate: 35.25 fl oz/a (0.075 lb/a zeta-cypermethrin + 0.75 lb/a chlorpyrifos)/season

Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Vulcan
- Rate: 1-2 pts/a
- Active ingredient: chlorpyrifos
- IRAC code: 1B
- Preharvest interval (days): 28; Do not allow livestock to graze in treated areas or otherwise feed treated soybean hay, and straw to meat or dairy animals.
- Maximum rate: Do not apply more than 6 pt (2.82 lb ai) of Vulcan/a/season. Do not make more than 3 applications/season of Vulcan insecticide or other product containing chlorpyrifos.
- Do not apply last two treatments closer than 10 days apart.

Warrior II
- Rate: 0.96-1.60 fl oz/a
- Active ingredient: lambda-cyhalothrin
- IRAC code: 3A
- Preharvest interval (days): 30
- Maximum rate: 3.84 fl oz/a or 0.24 pt/a (0.06 lb ai/a)/season

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Stink bug

Treat when adults or nymphs reach 1-3 bugs per foot of row during pod fill, 40 bugs per 100 sweeps for grain soybean, or 20 bugs per 100 sweeps for seed beans.

Acephate 90 Prill

Rate: 0.56 - 1.1 lbs/a
Active ingredient: acephate
IRAC code: 1B
Preharvest interval (days): 14; Do not graze or cut vines for hay or forage.
Maximum rate: Do not apply more than 1.66 lb/a/season

Asana XL

Rate: 5.8-9.6 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 0.2 lb ai/a/season
Do not feed or graze livestock on treated fields.

Baythroid XL

Rate: 1.6-2.8 fl oz
Active ingredient: beta-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 21 for grain, hay, and green forage
Maximum rate: 11.2 fl oz/a/season
Do not make foliar applications in fields treated with a neonicotinoid insecticide seed treatment within 45 days after planting.

Belay

Rate: 3.0-6.0 fl oz
Active ingredient: clothianidin
IRAC code: 4A
Preharvest interval (days): 21 for grain
Maximum rate: 0.2 lb ai/a/season
Do not make foliar applications in fields treated with a neonicotinoid insecticide seed treatment within 45 days after planting.
Do not graze or feed soybean forage and hay to livestock.

Besiege

Rate: 8.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year

Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC

Rate: 2.1-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced

Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Declare 1.25CS

Rate: 1.28-1.54 fl oz/a
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Delta Gold 1.5EC

Rate: 1.5-2.4 fl oz
Active ingredient: deltamethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 8.5 fl oz/a (0.1 lb ai/a)/season
Do not allow livestock to graze treated forage or feed treated hay to livestock.

Endigo ZC

Rate: 4.0-4.5 fl oz
Active ingredient: lambda-cyhalothrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cyhalothrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES

Rate: 2.1-6.4 fl oz/a
Active ingredient: chlorpyrifos
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb active ingredient (12.8 oz formulated)/a/season.
Do not make applications less than 30 days apart.

Fastac EC

Rate: 3.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC

Rate: 1.3-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Justice

Rate: 5.0 fl oz
Active ingredient: bifenthrin, acetamiprid
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 0.14 lb total ai/a (0.081 lb/a acetamiprid + 0.059 lb/a bifenthrin or 10.0 oz/a of Justice insecticide)/season
Do not graze or use cut forage or hay as an animal feed.

Leverage 360

Rate: 2.8 fl oz
Active ingredient: cyfluthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21 for seed, 15 for
hay and green forage
Maximum rate: 9.0 fl oz/a (0.07 lb ai/a beta-cyfluthrin + 0.14 lb ai/a imidacloprid)/season

Lorsban Advanced
Rate: 2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
Rate: 3.4 - 4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 3.2 - 4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.15 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm
Rate: 3.2 - 3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season

Silencer
Rate: 3.2 - 3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/season.

Skyraider
Rate: 2.1 - 6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21
Maximum rate: Do not apply more than 18 fl oz/a of Skyraider/year. Do not apply more than 0.14 lb ai/a of imidacloprid/year. Do not apply more than 0.3 lb ai/a of bifenthrin/year. Do not apply at intervals less than 30 days.

Stallion
Rate: 9.25 - 11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 28
Maximum rate: 35.25 fl oz/a (0.075 lb/a zeta-cypermethrin + 0.075 lb/a chlorpyrifos)/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Vulcan
Rate: 2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28; Do not allow livestock to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.
Maximum rate: Do not apply more than 6 pt (2.82 lb ai) of Vulcan/a/season. Do not make more than 3 applications/season of Vulcan insecticide or other product containing chlorpyrifos. Do not apply last two treatments closer than 30 days apart.

Warrior II
Rate: 1.60 - 1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 3.84 fl oz/a or 0.24 pt/a (0.06 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Thistle caterpillar (painted lady butterfly)
30% leaf defoliation before bloom and 20% defoliation between bloom and pod fill.

Ambush 2EC
Rate: 3.2 - 6.4 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 60 for grain
Maximum rate: 0.4 lb ai/a/season
Do not graze treated areas or harvest for forage or hay.

Belt 4SC
Rate: 2.0 - 3.0 fl oz/a
Active ingredient: flubendiamide
IRAC code: 2B
Preharvest interval (days): 14 for seed, 3 for forage and hay
Maximum rate: 6.0 fl oz/a/year

Besiege
Rate: 5.0 - 8.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: 20.0 fl oz Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Brigade 2EC
Rate: 2.1 - 6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced
Rate: 11.0 - 26.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.
Declare 1.25CS
Rate: 0.77-1.28 fl oz/a
Active ingredient: gamma-cypermethrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Endigo ZC
Rate: 3.5-4.0 fl oz
Active ingredient: lambda-cypermethrin, thiamethoxam
IRAC code: 3A, 4A
Preharvest interval (days): 30
Maximum rate: 9.0 fl oz of Endigo ZC or 0.06 lb ai of lambda-cypermethrin containing products or 0.125 lb ai of foliar applied thiamethoxam containing products/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Fanfare EC and ES
Rate: 2.1-6.4 fl oz/a
Active ingredient: chlorpyrifos
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb active ingredient (12.8 oz formulated)/a/season. Do not make applications less than 30 days apart.

Fastac EC
Rate: 1.3-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Fastac SC
Rate: 1.3-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 11.4 fl oz/a/season
Do not graze or harvested treated soybean forage, straw, or hay for livestock feed.

Hero
Rate: 2.6-6.1 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 41.2 oz or 0.40 lb ai/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Lorsban Advanced
Rate: 1.0-2 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a Lorsban Advanced/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Mustang
Rate: 1.4 - 4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 25.8 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Mustang Maxx
Rate: 1.28-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 24 oz/a (0.3 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Paradigm
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Silencer
Rate: 1.92-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/season

Stallion
Rate: 3.75-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 28
Maximum rate: 35.25 fl oz/a (0.075 lb ai/a/season)
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 2.0 - 4.0 pts/a/season
Do not apply last two treatments closer than 10 days apart.

Two-spotted spider mite
Treat when leaf stippling and live mites are present and before leaf discoloration or leaf drop progresses to middle and upper canopy.

Agri-Mek SC
Rate: 1.75-3.5m (non-ionic adjuvant required, see label)
Active ingredient: abamectin
IRAC code: 6
Preharvest interval (days): 28, 7 days for forage or hay
Maximum rate: 7.0 fl oz/a/season
Brigade 2EC
Rate: 5.12-6.4 fl oz
Active ingredient: bifenthrin
IRAC code: 3A
Preharvest interval (days): 18
Maximum rate: 0.3 lb ai/a/season

Cobalt Advanced
Rate: 11.0-26.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): 30
Maximum rate: 59 fl oz/a/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Declare 1.25CS
Rate: 1.54 fl oz/a
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 45
Maximum rate: 0.19 pt/a (0.03 lb ai/a)/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Dimethoate (several)
Rate: See label (rate varies by formulation).
Active ingredient: dimethoate
IRAC code: 1B
Preharvest interval (days): Consult label
Maximum rate: Consult label

Fanfare EC and ES
Rate: 5.12-6.4 fl oz/a
Active ingredient: bifenthrin
IRAC code: 3
Preharvest interval (days): 18
Maximum rate: Do not apply more than 0.3 lb ai (12.8 oz formulated)/a/season. Do not make applications less than 30 days apart.

Hero
Rate: 10.3 fl oz
Active ingredient: zeta-cypermethrin, bifenthrin
IRAC code: 3A
Preharvest interval (days): 21
Maximum rate: 41.2 oz or 0.40 lb ai/a/season
Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.

Lorsban Advanced
Rate: 0.5-1.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28
Maximum rate: 6.0 pt/a Lorsban Advanced or 2.82 lb ai/a chlorpyrifos/season
Do not allow meat or dairy animals to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.

Silencer
Rate: 3.84 fl oz/a (suppression only)
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30; Do not graze or harvest treated soybean forage, straw, or hay for livestock feed.
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/season

Skyraider
Rate: 5.12-6.0 fl oz/a
Active ingredient: bifenthrin, imidacloprid
IRAC code: 3A, 4A
Preharvest interval (days): 21
Maximum rate: Do not apply more than 0.14 lb ai/a of imidacloprid/year. Do not apply more than 0.3 lb ai/a of bifenthrin/year. Do not apply at intervals less than 30 days.

Vulcan
Rate: 0.5-1 pt/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): 28; Do not allow livestock to graze in treated areas or otherwise feed treated soybean forage, hay, and straw to meat or dairy animals.
Maximum rate: Do not apply more than 6 pt (2.82 lb ai) of Vulcan/a/season. Do not make more than 3 applications/season of Vulcan insecticide or other product containing chlorpyrifos. Do not apply last two treatments closer than 10 days apart.

Zeal 2.88 SC
Rate: 2-6 fl oz/a
Active ingredient: Extoxazole
IRAC code: 10B
Preharvest interval: Do not apply after R5. Do not graze treated soybean fields for feed treated forage or hay to livestock
Maximum rate: maximum of 1 applications/season; Do not apply more than 0.27 lb ai/a per calendar year, do not apply treatments less than 14 days apart.
Precaution: Zeal SC is predominately an ovicide/larvicide and should be used early in the life cycle of mites.
Soybean grown in Wisconsin are subject to attack by several disease-causing organisms. Growers should learn to identify the major soybean diseases in order to distinguish them from poor plant health due to insects, adverse weather and soil conditions, herbicide injury, and nutrient deficiencies. Solutions to disease problems are generally quite different compared with solutions to insects, weeds, and other problems. Soybean diseases can be controlled or reduced by planting resistant or tolerant varieties, using a crop management system that fits your farming operation, and using agricultural chemicals—generally fungicides.

Resistant or tolerant varieties
The use of disease-resistant or tolerant varieties is a practical and economical control for soybean diseases in Wisconsin. However, no soybean variety is resistant to all diseases. Carefully evaluate the major diseases on your farm and consider disease reactions when selecting soybean varieties. Disease reaction of soybean varieties can differ from year to year because the microorganisms that cause plant disease can change genetically and attack varieties that were formerly resistant. Soybean varieties also may have different reactions when grown under different cultural practices and weather conditions. Consult the publication Wisconsin Soybean Variety Tests (A3654) at coolbean.info for information on specific varieties appropriate for your location.

Crop management
The use of crop rotation and clean tillage are very powerful disease-control tools. Many fungal and bacterial pathogens of soybean survive between cropping seasons in soybean crop debris. Once this crop residue is thoroughly decayed, these disease-causing organisms die out. Therefore, crop rotation and tillage programs that permit residue decomposition before the next crop is planted will help reduce diseases such as brown stem rot, Sclerotinia stem rot (white mold), pod and stem blight, anthracnose, stem canker, Septoria brown spot, Cercospora leaf spot (purple seed stain), bacterial blight and several other fungal and bacterial leaf diseases, and the soybean cyst nematode. Soil populations of the soybean cyst nematode can be minimized by crop rotation with nonhost crops.

Very few of the fungi and bacteria that attack soybean infect other crop plants. Rotations with corn, small grains, or most forages deprive soybean pathogens of a host on which to infect, reproduce, and carry over between soybean crops.

Adequate, balanced soil fertility also can be important in reducing disease losses. Less-than-adequate phosphorus or potash can result in increased losses from Septoria brown spot, soybean cyst nematode, several root rots, and pod and stem blight. Healthy, vigorous plants are more tolerant of diseases and better able to produce a near-normal yield despite the presence of diseases.

Foliar fungicides
Foliar fungicides can be used to lower losses due to foliar and stem diseases. In some years, the stem rot pathogen Sclerotinia (white mold pathogen) can be damaging and an application of fungicide may improve yields in at-risk fields. Pod and stem blight may reduce yield, but its major effect is through seed infection (Phomopsis seed decay) that results in reduced seed germination and lower seedling vigor. Evaluations in Wisconsin reveal that foliar-applied fungicides reduce seed infection and improve germination. Foliar-applied fungicides for the control of some leaf diseases, white mold, and pod and stem blight have improved yields in Wisconsin tests, but results can be inconsistent.

Foliar fungicides might be considered for control of white mold (Table 3-11). Success using a fungicide to control this disease will depend on the field history of white mold, level
of resistance in the variety grown, the weather prior to, and during, soybean bloom, and the yield potential of the field. The following factors can contribute to increased risk of white mold:

- Fields that have high yield potential (>50 bu/a) and a history of white mold will be at risk.
- A susceptible variety was planted in a field with history of white mold.
- If the average temperature is at 70°F and wet for 30 days prior to bloom, the risk of infection by the white mold pathogen with be elevated. If conditions remain wet and/or humid during the bloom period, the risk for infection will further increase.

During these periods of high risk, a fungicide application targeted toward white mold management might reduce white mold levels and increase yield. Growers should also consider cost and the return on the investment in fungicide and application when making this decision. Each treatment costs about $25 to $40/a for the chemical, wetting agent, and application. Some fungicide products might require two applications to achieve acceptable control.

Soybean seed producers should consider the use of foliar fungicides to improve seed quality, taking the following factors into account:

- **Potential risk.** The diseases controlled by fungicide sprays are important when warm, wet weather prevails during the pod-fill stage. If, at bloom, the 30-day outlook is for warm, wet weather, these diseases will be active and fungicide sprays will be beneficial. Most product labels suggest two sprays, one at early pod development (upper pods 0.50 to 0.75 inches long) and a second spray 14 to 21 days later. However, if the weather has been dry since the first application and the forecast is for continued dry weather, do not spray a second time.

- **Was the field planted to soybean the previous year?** If you grow soybean for two or more consecutive years, disease severity potential will be higher than if you rotate crops.

- **No-till or minimum tillage.** This will increase the potential of disease if soybean are planted consecutive years (exception for white mold).

- **Early-maturing varieties.** These usually suffer greater losses from diseases controlled by foliar fungicides than full-season varieties.

- **Benefits of improved seed quality.** The benefits from disease control may be an important consideration for applying fungicides to seed-production fields.

- **High yields.** Higher yields, 50 bu/a or more, should be anticipated if fungicide application is to be economical.

- **Treatment cost versus expected benefit.** Each treatment costs about $25 to $40/a for the chemical, wetting agent, and application.

- **A dense canopy of weeds.** This will impede the movement of the fungicide to soybean pods and foliage.

- **Soil-applied fungicides**

 These can be used for control of Phytophthora root rot. Ridomil Gold GR is a product registered for this purpose. Consider the following if you are thinking of using Ridomil Gold GR:

 - **Potential risk.** Ridomil should be considered for fields with a history of frequent Phytophthora root rot. This disease can cause significant yield loss even without extensive plant death. Soils with high water-holding capacity are usually at greatest risk.

 - **Soybean variety.** Ridomil performance is greatly affected by a variety’s level of resistance or tolerance to Phytophthora root rot. Varieties that are highly tolerant have performed best with Ridomil use in Wisconsin research trials. Varieties with full resistance respond less to Ridomil treatment. Ridomil should not be applied to a fully susceptible or low-tolerant soybean variety.

Soybean diseases

Phytophthora root rot

Phytophthora root rot may be found on soybean grown on any soil type, but soils with poor internal drainage are especially prone to Phytophthora problems. Young plants are very susceptible and die quickly, the resulting gaps in rows are the only evidence the disease is present. Older plants are killed more gradually or plant vigor is reduced throughout the growing season. Initial leaf symptoms are a progressive yellowing and wilting of leaves from the bottom to the top of the plant. The dead leaves generally remain attached for a week or more. Dead or dying plants have a brown discoloration of the stem progressing upward from the soil line.

Variety selection and field monitoring. Planting resistant varieties provides the highest level of protection against individual races of Phytophthora. So if the fungus exists in your fields, you'll need to know which races are prevalent. To determine which races are present in a field, plant several varieties that differ in reported resistance. This test is especially important when planting a variety in a specific field for the first time. Races of the pathogen can differ from field to field. Also, new races can become prevalent, and a soybean variety that has shown no Phytophthora root rot in past years can become very diseased. For this
reason, it’s important to monitor the performance of varieties with race-specific resistance. Be aware that many soybean varieties have the same source of resistance to Phytophthora root rot. Consult the publication Wisconsin Soybean Variety Tests at coolbean.info for information on specific varieties.

Resistant varieties. Soybean varieties contain different genes for resistance. Each gene confers resistance to specific races of Phytophthora. No one variety is resistant to all races. This form of resistance results in a very high level of control. Resistant varieties perform well across a wide range of environments; however, the appearance of a new race can result in severe disease.

Tolerant varieties. Many soybean varieties are not highly resistant to specific races of Phytophthora but vary in the degree of susceptibility to all races. Varieties with a low level of susceptibility frequently are referred to as tolerant. Highly tolerant varieties can perform very well against Phytophthora root rot. However, performance of tolerant varieties can drop when conditions are highly favorable for this disease. Tolerance can be supplemented by use of appropriate cultural practices, formulations of seed treatment fungicides that contain mefenoxam or metalaxyl, and Ridomil soil treatment.

Cultural practices. Phytophthora root rot is most effectively suppressed by avoiding susceptible varieties. The ability of varieties to resist Phytophthora root rot can be enhanced by the following cultural practices.

- Improve soil drainage.
- Avoid tillage practices or other field activities that enhance soil compaction.
- Ridge soil around the base of plants during cultivation to promote root growth from the lower

Table 3-8. Fungicides for treating soybean seeds for protection against Fusarium, Rhizoctonia, Pythium, Phytophthora, and Phomopsis

<table>
<thead>
<tr>
<th>Fungicide(s)</th>
<th>Sample formulations</th>
<th>Pathogens controlled</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>HiStick N/T, Vault HP</td>
<td>Fus. Rhiz. - - -</td>
<td>Provides protection against several early-season root diseases. Can be applied with other compatible seed treatments, but follow label directions closely.</td>
</tr>
<tr>
<td>carboxin + metalaxyl + captain</td>
<td>Bean Guard/ Allegiance</td>
<td>Fus. Rhiz. Pyth. - -</td>
<td>Combines the systemic action of carboxin and metalaxyl with the contact action of captain. Effective against Pythium and Rhizoctonia and show good activity against Fusarium and Helminthosporium.</td>
</tr>
<tr>
<td>fludioxonil</td>
<td>Maxim 4FS</td>
<td>Fus. Rhiz. - - -</td>
<td>Protects against Rhizoctonia and seed-borne Phomopsis. Use with Apron XL for broad-spectrum protection.</td>
</tr>
<tr>
<td>Fluopyram</td>
<td>ILevo</td>
<td>Fus. Rhiz. - - -</td>
<td>Provides control of sudden death syndrome of soybean and nematodes including soybean cyst nematode. Must be mixed with other seed treatments for control of additional seed rot fungal pathogens.</td>
</tr>
<tr>
<td>ipconazole + metalaxyl</td>
<td>Rancona CTS, Rancona Summit, Rancona Xxtra, Rancona Xxtra Pro</td>
<td>Fus. Rhiz. Pyth. Phyt. Phom.</td>
<td>May be applied with mechanical, slurry, or mist-type seed treating equipment. Seed should be sound and well cured before treatment.</td>
</tr>
</tbody>
</table>

Key: x = labeled, no data; - = not labeled for this disease
*Follow label instructions for application rates and additional application instructions. Apply fungicide seed treatments before applying a Rhizobium inoculum and plant seed immediately.
Continued on next page
Table 3-8. Fungicides for treating soybean seeds for protection against Fusarium, Rhizoctonia, Pythium, Phytophthora, and Phomopsis* (continued)

<table>
<thead>
<tr>
<th>Fungicide(s)</th>
<th>Sample formulations</th>
<th>Pathogens controlled</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipconazole + metalaxyl + clothianidin + Ethaboxam</td>
<td>Intego Suite Soybean</td>
<td>Fus. Rhiz. Pyth. Phyt. Phom.</td>
<td>x x x x Contains clothianidin for control of wireworm, white grub, seedcorn maggot, and bean leaf beetle.</td>
</tr>
<tr>
<td>mefenoxam</td>
<td>Apron XL-RTA</td>
<td>x x</td>
<td>Improves stands by controlling seed rot and seedling death caused by Phytophthora and Pythium. Has systemic activity. Will enhance performance of varieties with low to moderate resistance (tolerance) to Phytophthora.</td>
</tr>
<tr>
<td>metalaxyl</td>
<td>many</td>
<td>x x</td>
<td>Improves stands by controlling seed rot and seedling death caused by Phytophthora and Pythium. Has systemic activity. Will enhance performance of varieties with low to moderate resistance (tolerance) to Phytophthora.</td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td>Acceleron DX-109</td>
<td>- x - -</td>
<td>Provides protection against seed and seedling disease due to Rhizoctonia and may provide suppression against Pythium spp.</td>
</tr>
<tr>
<td>sedaxane</td>
<td>Vibration</td>
<td>x - - -</td>
<td>For control of seed decay, seedling blight, and damping-off caused by Rhizoctonia solani.</td>
</tr>
<tr>
<td>Streptomyces lydicus</td>
<td>Actinogrow ST</td>
<td>x x x x</td>
<td>Biological fungicide for suppression of early season root rot and damping-off fungi. Can be combined with other chemical seed treatment fungicides and/or insecticides.</td>
</tr>
<tr>
<td>thiabendazole</td>
<td>Mertect 340F</td>
<td>x - - -</td>
<td>Provides protection against pod and stem blight on soybean seed. Can provide protection against sudden death syndrome using the high, labeled rate.</td>
</tr>
<tr>
<td>thiamethoxam + mefenoxam + fludioxonil</td>
<td>CruiserMaxx Plus, CruiserMaxx Plus EZ</td>
<td>- x x x</td>
<td>Mefenoxam is active against Pythium and Phytophthora. Fludioxonil is active against Fusarium and Rhizoctonia solani and suppresses seed-borne Sclerotinia and Phomopsis.</td>
</tr>
<tr>
<td>thiamethoxam + mefenoxam + fludioxonil + sedaxane</td>
<td>Cruisermaxx Vibration</td>
<td>- x x x</td>
<td>For control of seedling diseases and seedling blights. Also contains an insecticide.</td>
</tr>
<tr>
<td>Trichoderma harzianum Rifai</td>
<td>Rootshield</td>
<td>- x x</td>
<td>Preventative biological fungicide that protects against several root pathogens. Can be used with some other chemical fungicides, but consult compatibility charts for specific information.</td>
</tr>
<tr>
<td>thiram</td>
<td>many</td>
<td>x x</td>
<td>Protects against seed rot; suppresses seedborne fungi.</td>
</tr>
<tr>
<td>Tolclophos-methyl</td>
<td>Rizolex</td>
<td>- x</td>
<td>Provides protection against Rhizoctonia and Fusarium species that cause seed and seedling rots.</td>
</tr>
<tr>
<td>trifloxystrobin</td>
<td>Trilex, Acceleron DX-709</td>
<td>x -</td>
<td>Provides seed and seedling protection against seedborne fungi causing seed decay, soilborne pathogens, and Rhizoctonia solani and Fusarium spp.</td>
</tr>
<tr>
<td>trifloxystrobin + metalaxyl</td>
<td>Trilex 2000, Trilex AL</td>
<td>x -</td>
<td>Provides seed and seedling protection against seedborne fungi causing seed decay and the soilborne pathogens Rhizoctonia solani and Phytophthora spp.</td>
</tr>
</tbody>
</table>

Abbreviations: Fus. = *Fusarium virguliforme*; Rhiz. = Rhizoctonia; Pyth. = Pythium; Phyt. = Phytophthora; Phom. = Phomopsis

Key: x = labeled, no data; - = not labeled for this disease

* Follow label instructions for application rates and additional application instructions. Apply fungicide seed treatments before applying a Rhizobium inoculum and plant seed immediately.
stem. This may suppress Phytophthora root rot when the root rot phase predominates. The lower soil moisture in the ridges creates a less favorable environment for Phytophthora activity.

Chemical control. For early Phytophthora root rot control, treat seed with a compound that has this disease on the label; treat only varieties with moderate to high tolerance. For longer control, apply Ridomil Gold GR.

Brown stem rot

Brown stem rot (BSR) can reduce grain yield by 10 to 25%. Symptoms do not appear until after pod development has begun. The insides of stems turn brown and leaves gradually yellow, wilt, and die. The symptoms begin in August and early September, depending on the relative maturity of the variety. Due to the timing, BSR is often confused with early maturity. Yield loss due to BSR is greatest when the soybean crop is planted early in and in narrow rows. Brown stem rot resistant varieties and/or longer crop rotations may be most critical in this situation.

Crop management. Crop rotation can be used to control BSR. However, if growing susceptible varieties, you should have at least 2 years of a nonhost crop between soybean crops. Rotating soybean and corn on alternate years can result in yield loss due to BSR. Corn and small grains are excellent nonhost crops. Current research indicates that forage legumes, peas, and snap beans are not associated with increased severity of BSR. The risk of BSR declines as soil pH increases to 7.0 or above.

Resistant varieties.

Both public and private soybean varieties are available with moderate to high levels of resistance to BSR. Consult the publication *Wisconsin Soybean Variety Tests* (A3654) at coolbean.info for information on specific varieties. Watch for foliar symptoms associated with “resistant” varieties. These symptoms may be caused by a breakdown of resistance by the BSR pathogen or a different pathogen.

Integration of rotation and resistant varieties. The movement to more integrated agricultural systems to reduce production costs makes an alternating soybean and corn rotation a seemingly desirable system. However, only 1 year of corn between soybean crops results in minimal suppression of the BSR fungus. Preliminary results from experiments in Iowa and Wisconsin suggest that varieties that are highly resistant to BSR reduce inoculum in the soil, but to a lesser degree than a year of corn. Thus, use of varieties resistant to BSR may take on added importance as the time interval between soybean crops is shortened. Although planting a variety resistant to BSR would be the most effective management option, another option is to plant resistant and susceptible soybean varieties on an alternating basis each time soybean are planted in rotating corn or other nonhost of the BSR fungus. Brown stem rot is more severe in no-till fields than in conventional till. Therefore, longer crop rotations and/or resistant varieties should be considered if using no-till systems for soybean production.

Sudden death syndrome

Sudden death syndrome (SDS) is a relatively new disease to Wisconsin but nationally it is one of the top five yield-limiting diseases. Symptoms of SDS include a yellow to brown discoloration of the leaves around the veins, which can be mistaken for brown stem rot (BSR). To differentiate the symptoms in the field, start by noting the growth stage (SDS typically expresses symptoms earlier in reproductive growth than BSR) and then digging plants out with a shovel so that the roots are intact. Split the stem; SDS does not lead to a brown discoloration of the vascular and pith tissue that is typical with BSR. When infection is severe, it is possible to see a blue coloration on the taproot. This is growth of the fungus. Keep in mind that SDS and BSR can occur together in the same plant, so it is important to properly diagnose the disease.

Risk factors.

The pathogen that causes SDS overwinters in soybean debris as resistant fungal spores. Disease development is favored by high soil moisture during vegetative growth and wet and cooler conditions around flowering. Low spots or areas prone to water retention or poorly drained areas are more favorable for disease development. It is not uncommon to see very abrupt areas in the field where plants are severely infected while the neighboring plants are healthy.

Dealing with SDS. There is a known association of increased severity of SDS when the soybean cyst nematode (SCN) is present, although both can occur in the absence of each other. We strongly advise taking a soil sample and submitting for testing for the presence of SCN from any field where SDS was noted. Management of SDS includes the use of resistant cultivars and the monitoring of conditions at planting to avoid cool soil temperatures that are favorable for the pathogen. Very little varietal tolerance information exists in maturity group 2 and earlier soybean cultivars in Wisconsin; consult the Soybean Variety Trial Results at coolbean.info for ratings for SDS when conditions warrant. Tillage should also be considered to help increase soil temperature and drainage, although crop rotation does not appear to have much of an impact on SDS as outbreaks have been noted after several other crops, including corn. Recent data suggest that new seed treatments such as Ilevo and Mertec 340-F can suppress early infection of the SDS fungus and reduce yield losses. History and severity of the disease in a particular field in addition to cost of product and application should be considered when determining the utility of...
a seed treatment for management of SDS.

Leaf diseases

Leaf diseases such as downy mildew, bacterial blight, powdery mildew, and brown spot are present in most soybean fields but generally do not cause significant yield losses. Frog-eye leaf spot and Cercospora leaf spot, diseases normally found in the South, are becoming more prevalent in Wisconsin. Hot, humid weather favors development of these diseases.

Yield losses from leaf diseases may occur more frequently if soybean are planted after June 1, especially if downy mildew or powdery mildew develop. Under certain environmental conditions these diseases can occur early in the growing season and cause premature defoliation and subsequent yield losses. Early development of brown spot may indicate other health problems are present. Crop rotation, fall plowing to bury soybean debris, or application of foliar fungicides at early podding can reduce the incidence of leaf diseases.

Soybean rust

Soybean rust is a fungal disease that was first detected in the United States in 2004. Soybean are susceptible to rust infection at all growth stages. Infected plants have fewer pods, fewer seeds per pod, and poorly filled seeds. To date, losses due to soybean rust in the United States have been low, and the disease has not been observed in Wisconsin.

Symptoms. Symptoms first appear in the lower canopy with tiny gray spots forming on the undersides of leaves, often clustered near leaf veins. As the disease progresses, the spots rapidly increase in size and become visible on the upper side of the leaf as well as on petioles, stems, and pods. Spots change color, going from gray to tan to reddish-brown or black. Leaves turn yellow and drop prematurely. Early rust symptoms may be mistaken for downy mildew, brown spot, bacterial pustule, or frogeye leaf spot.

There is no evidence that the soybean rust fungus will survive Wisconsin winters. As a result, the pathogen must be blown northward to reinfest fields each year. Disease development is favored by long periods of leaf wetness (at least 8 hours), high relative humidity (75 to 80%), and temperatures between 59 and 86°F. At higher temperatures, disease development slows or stops. Spores can be produced 10 days after infection and are continually released as long as environmental conditions are favorable.

Scouting. Early detection and a rapid response are critical to soybean rust management. To help guide scouting, monitor the soybean rust website on the ipmPIPE: sbr.ipmpipe.org. Scout fields frequently, concentrating on early planted fields and early maturing varieties, and in fields that are subject to prolonged dews. Begin monitoring at soybean emergence and continue on a weekly schedule. Use a hand lens to check lower leaves where rust symptoms are likely to show first.

To confirm diagnosis, select leaves representing the range of symptoms. Place the leaves between layers of cardboard and paper towels and place in a sealable plastic bag. Keep them cool until mailing and record as much field history information as possible. Send to the Plant Disease Diagnostics Clinic, Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706-1598.

Rust management. Fungicides are the only in-season control practices that are effective against soybean rust. Method of control is considered either protectant or penetrant:

• Protectant fungicides. These prevent fungi from infecting and/or penetrating host tissue. These fungicides must be in place before plants are infected, or they will not control the disease. The strobilurin class of fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, etc) are all protectant fungicides.

• Penetrant fungicides. These can inhibit or stop the development of infections that are recently established. These fungicides are also able to slow disease development by limiting the pathogen’s ability to produce new spores. This “post-infection activity” makes triazoles the fungicide of choice if soybean rust is established at low levels in a field. It is important to remember that triazoles do not have unlimited curative activity and are most effective when applied to plants with less than 10% infection in the lower canopy. Triazole fungicides may also be applied as a preventive, before disease infection.

Soybean cyst nematode

The soybean cyst nematode (SCN) was first discovered in southeastern Wisconsin in 1980. Currently, this destructive root-infesting pathogen should be considered a threat in all soybean growing regions of Wisconsin.

Soybean cyst nematodes are microscopic roundworms that reside in the soil and live by extracting nutrients from soybean roots. Common foliar symptoms are yellowing and eventual premature death. Plants damaged by SCN are usually stunted and nodulation is often disrupted. Plant death may occur, but usually does not. Symptoms can be confused with other crop production problems such as nutrient deficiencies, injury from agricultural chemicals, soil compaction, and other soybean disorders. Populations of SCN can also interact with and intensify these disorders, and vice versa.

If high populations of SCN are present, plants show symptoms often before flowering. However, symp-
tomato roots may not appear until pod set if low soil populations of SCN exist. Infected plants commonly occur in oval-shaped patches that vary in size and increase each year soybean are planted in an infested field. The affected area generally expands in the direction of tillage.

A laboratory soil analysis usually is necessary to determine the presence of SCN. However, you can diagnose SCN in the field by observing the cysts on the soybean root. Initially, the cysts are white, but they turn brown with time. The cysts are approximately the size of a pin head. Be careful not to confuse them with nodules caused by nitrogen-fixing bacteria.

Sampling for SCN. A soil analysis test can be used to confirm a suspected nematode problem or to eliminate SCN as one of several possible causes of poor plant growth. Soil samples can be taken any time of the year.

There are several ways to take a soil sample; the following is a general guide:

1. Use a soil probe or narrow-bladed trowel or shovel. Take samples close to plants at a depth of 8 to 10 inches. Discard the upper 2 inches of soil, especially if it is dry. Be sure to include plant roots.
2. Submit one sample for a 10-acre field or for a suspected area within the field. Sample soil and roots from 12 to 20 plants and mix into one sample; 1 to 2 pt of soil is adequate. Sample from plants in the margins of suspected areas and not from their centers.
3. Place samples in sturdy plastic bags, fasten the open end securely, and accurately label samples. Keep the samples from becoming dry and overheated. Mail samples early in the week to avoid delays in transit.

Laboratories will report the number of nematodes per unit of soil, usually per 100 cc of soil, or per gram of dry root. Growers and crop consultants may use these lab results to determine SCN damage potential (table 3-9). Nematode analysis laboratories are listed in table 2-15.

Crop management. To keep soil populations of SCN at non-damaging levels, rotate soybean with crops such as small grains, corn, alfalfa, and most vegetables (except peas, snap beans, lima beans, and dry-edible beans). The SCN can increase rapidly if soybean are frequently planted in the same field.

Two years of field studies indicate that you can expect higher populations of SCN if planting in areas of fields with soil pH levels above 7.0 as compared to areas with pH levels of 5.9 to 6.5. Damage is usually more severe in sandy soils, but will occur in all types of soil.

Resistant varieties. SCN-resistant soybean varieties are becoming available. However, control should start with crop rotation, which delays development of damaging levels of SCN and greatly enhances the performance of resistant soybean varieties. Sample soils to determine population levels of SCN. Resistant varieties should be planted in fields with more than 1,000 SCN eggs/250 cc of soil. Consult the Wisconsin Soybean Variety Tests at coolbean.info for information on specific varieties.

Diaporthe pod and stem blight

Pod and stem blight is a conspicuous disease of maturing soybean. Plants are infected throughout the season, but conspicuous symptoms do not appear until 2 to 3 weeks before maturity. Symptoms are small, black fruiting bodies that look like specks on maturing soybean stems and pods. Severe infection by the Diaporthe fungus does not always mean a reduction in yield, but it generally results in reduced quality of seed for market or future planting. This is the Phomopsis seed decay phase of pod and stem blight. Infected seed may show no detectable symptoms or can be in some stage of decay. Visibly infected seeds are a discolored brown, shriveled, and often covered with white mold. This disease is favored by warm, wet weather during late pod fill.

Control. Diaporthe pod and stem blight can be controlled or reduced by integrating one or more of the

<table>
<thead>
<tr>
<th>Risk</th>
<th>Egg count range/100 cc soil</th>
<th>Potential yield loss for SCN susceptible variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0-500</td>
<td>0-10% silt or clay soil</td>
</tr>
<tr>
<td>Low</td>
<td>500-2,000</td>
<td>10-20% silt or clay soils</td>
</tr>
<tr>
<td>Moderate</td>
<td>2,000-5,000</td>
<td>20-50% all soils</td>
</tr>
<tr>
<td>High</td>
<td>> 5,000</td>
<td>30-70% expected yield loss for resistant varieties</td>
</tr>
</tbody>
</table>

* Soybean varieties with CystX resistance should be superior to other forms of SCN resistance in fields with very high SCN populations in the soil.
following practices: use pathogen-free seed, delay planting, practice crop rotation, deep-plow soybean debris, harvest as early as possible, and apply registered fungicides at early podding (see the section on fungicides). Resistant varieties are not known, but early-maturing varieties generally are more susceptible. Seed treatments are useful when Phomopsis-infected seed must be sown. Plant disease diagnostic laboratories can examine seed lots to determine approximate amounts of infection that may be present in seed. Narrow-row production does not increase pod and stem blight (Phomopsis seed decay).

Sclerotinia stem rot

Sclerotinia stem rot (also called white mold) is characterized by dying plants in which the stems are covered with white mycelium and hard black structures called sclerotia. Sclerotia also form inside infected stems. *Sclerotinia* stem rot can be confused with Phytophthora root rot. Close inspection of affected plants is very important. *Sclerotinia* stem rot is favored by cool to moderate temperatures and high humidities in the crop canopy, especially during the flowering phase of crop development.

The risk of *Sclerotinia* stem rot is greatest when soybean are grown in high-yield environments. Narrow-row production, early planting, plant populations greater than 200,000 plants per acre, irrigation, and high soil fertility are management practices that increase the risk of *Sclerotinia* stem rot. Variety selection is critical under these conditions.

Control. *Sclerotinia* stem rot management recommendations are based on the amount of disease that has been present in the field and on the relative resistance or susceptibility of the soybean variety planted. Refer to table 3-11 for specific recommendations.

*Soybean varieties differ in susceptibility to Sclerotinia stem rot. Complete resistance to Sclerotinia is not available. Disease reactions of soybean varieties are greatly influenced by environmental conditions. Consult the publication Wisconsin Soybean Variety Tests (A3654) for information on specific varieties.

The *Sclerotinia* stem rot fungus survives for years in the absence of a favorable host. Two years of a nonhost crop reduces but does not eliminate the risk of *Sclerotinia* stem rot. Corn and small grains are excellent nonhost crops to rotate with soybean; sunflowers, lima beans, and snap beans are hosts and increase the potential of *Sclerotinia* stem rot in soybean. Many broadleaf weeds are also hosts. Thus, control of broadleaf weeds in the nonhost crop year is critical.

There are several fungicides labeled for use in soybean for the control of *Sclerotinia* stem rot. However, most are only moderately effective and need to be applied when flowers are present on the lower half of the stem.

Herbicides containing lactofen (Cobra, Phoenix) will suppress white mold if applied at or before first bloom. Check the label for rates and adjuvant recommendations.

Sclerotia of the *Sclerotinia* stem rot fungus are long-lived in soil but are subject to attack by many soil organisms. One commercially available biological control product, Contans WG, is labeled to control *Sclerotinia* stem rot in agricultural soils. Contans WG is applied in water to the soil surface, usually during preplanting or post-harvest on the stubble of a previously diseased crop. Contans WG can be sprayed just ahead of the tillage equipment. It should be incorporated within 24 hours after spraying, ideally immediately after spraying. Contans WG can be incorporated with irrigation on sandy soils and some peat soils. It may be tank mixed and applied with herbicides such as trifluralin or glyphosate. Do not mix Contans with any other fungicide. Read and follow label directions. The more time between treatment and the typical onset of disease, the better.

Alfalfa mosaic virus

Alfalfa mosaic virus (AMV) was first detected in soybean in 1999. Most AMV inoculum is introduced into soybean fields by aphids that acquire the virus from forage legumes. Transmission occurs throughout the season. Infected leaves may have a bright yellow mosaic or the leaf veins may turn yellow, but the rest of the leaf remains the normal green color.

Control. No genes with resistance have been reported. Soybean planted early in the season appear to be less affected by the disease.

Bean pod mottle virus

Bean pod mottle virus (BPMV) was first detected in Wisconsin in 1999. Bean leaf beetles feed on infected forage legumes and transmit the virus to soybean throughout the season. Young leaves in the upper canopy exhibiting light green to yellow mottling. Some leaves become puckered and distorted. Stems remaining green after pods have matured retain petioles after leaf blades drop. The virus survives in insects over the winter.

Control. Tolerant varieties are reported, but varieties are not characterized for reaction to BPMV. Management of bean leaf beetle is key to control of virus (see the insect section for recommendations). Delay planting until mid-May to avoid feeding by overwintered bean leaf beetles.

Soybean mosaic virus

The soybean mosaic virus (SMV) occurs in Wisconsin, but yield loss has not been documented. Infected leaves develop a mosaic of light and dark green areas and chlorosis may develop between the dark green areas. Leaf surfaces become raised or blistered and leaf margins may
be wavy or curl downward. Most infected plants are slightly stunted, have fewer pods, and mature later. Infected seed, a major source of inoculum, may be discolored. Aphids feed on infected plants and transmit SMV to healthy plants throughout the season.

Control. Plant virus-free seed. Varieties appear to differ in susceptibility but they are not characterized for reaction to SMV. Soybean planted early in the season appear to be less affected by the disease.

Soybean vein necrosis virus

Soybean vein necrosis virus (SVNV) causes soybean vein necrosis (SVN) is a relatively recent discovery in soybean. SVN was first described in 2008 in Tennessee and was confirmed in Wisconsin in 2012. Soybean plants with SVN exhibit vein clearing (i.e., lightening of vein color) and chlorosis (i.e., yellowing), as well as mosaic patterns (i.e., blotchy light and dark areas) on affected leaves. Initially, symptoms develop around the veins of leaves and eventually expand outward. As the disease progresses, vein and leaf browning and necrosis (i.e., death) occur. Researchers do not know if SVN can lead to significant yield reductions. Recent research in Wisconsin found that SVNV can be transmitted in soybean seed at a rate of around 6%.

Control. Plant seed that appears healthy and is not visually damaged.

Table 3-10. Fungicide efficacy ratings for foliar soybean diseases in Wisconsin

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Alternaria leaf spot</th>
<th>Anthracnose</th>
<th>Cercospora leaf spot</th>
<th>Frogeye leaf spot</th>
<th>Pod and stem blight</th>
<th>Powdery mildew</th>
<th>Septoria brown spot</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AfterShock</td>
<td>x</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>fluoxastrobin</td>
<td>QoI (11)</td>
<td>2.0–5.7 fl oz</td>
<td>Apply no later than R5</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 22.8 fl oz/a per year or more than four applications per year. Do not apply within 14 days of harvest.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto 100 SL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>4</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>cyproconazole</td>
<td>triazole (3)</td>
<td>2.75–5.5 fl oz</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 11 fl oz/a/season. Do not graze within 14 days of application or apply more than 0.072 lb ai/a/year of cyproconazole-containing products. Do not use soybean forage or hay as livestock feed if making more than one application at 5.5 fl oz/a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AmTide</td>
<td>-</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>propiconazole</td>
<td>QoI (11)</td>
<td>4.0–6.0 fl oz</td>
<td>Do not apply after R6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 12 fl oz/a per season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aproach</td>
<td>x</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>6</td>
<td>picloroxystrobin</td>
<td>QoI (11)</td>
<td>6.0–12.0 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Make no more than two sequential applications before switching to a fungicide with a different mode of action. Do not exceed 12 fl oz/a per crop if grown for forage and hay. Do not exceed 36 fl oz/a per crop.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aproach Prima</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>picloroxystrobin</td>
<td>+ cyproconazole</td>
<td>QoI (11)</td>
<td>triazole (3)</td>
<td>5.0–6.8 fl oz</td>
<td>30 days for grain, 14 days for forage or hay</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 13.6 fl oz of product/a per year. Do not apply more than two sequential application of fungicide products containing a QoI (11) component. Do make more than one application of 6.8 fl oz/a per crop if the intention is to use soybean as forage or hay for livestock.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efficacy rating: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control

Key: x = labeled, no data; - = not labeled for this disease

\(^{a}\) FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.

\(^{b}\) Suppression only.

Tobacco streak virus

Tobacco streak virus (TSV) is widespread in Wisconsin but yield loss is not known. This disease was detected in soybean for the first time in 1999. Infected leaves acquire a mild mosaic coloring of yellow and green. Leaf and flower buds may be excessively proliferous. Maturity is delayed in infected plants and plants remain green. Most TSV inoculum is introduced into soybean fields as infected seed. Thrips transmit TSV to healthy plants throughout the season.

Control. Varieties appear to differ in reaction to TSV although genes with resistance to the virus have not been reported. Soybean planted early in the season appear to be less affected by the disease.
Table 3-10. Fungicide efficacy ratings for foliar soybean diseases in Wisconsin (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Alternaria leaf spot</th>
<th>Anthracnose</th>
<th>Cercospora leaf spot</th>
<th>Cercospora leaf spot</th>
<th>Pod rot & stem blight</th>
<th>Powdery mildew</th>
<th>Septoria brown spot</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaris</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>x</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td></td>
<td>-</td>
<td>azoxystrobin + propiconazole</td>
<td>QoI (11) triazole (3)</td>
<td>14.0–20.5 fl oz</td>
<td>Do not apply within 21 days of harvest</td>
<td>Remarks: Do not apply more than 42 fl oz/a per season. Do not apply more than 0.34 lb ai/a of propiconazole-containing products per season. Do not apply more than 1.5 lb ai/a of azoxystrobin-containing products per season.</td>
</tr>
<tr>
<td>Bravo Weather</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>chlorothalonil</td>
<td>chloronitrile (MS)</td>
<td>1.0–2.25 lb</td>
<td>6 weeks</td>
<td>Remarks: Do not apply more than 6 pt/a during each growing season. Do not feed hay or threshings from treated fields to livestock.</td>
</tr>
<tr>
<td>Stik</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cercobin</td>
<td>-</td>
<td>x</td>
<td>5</td>
<td>8</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>thiophanate-methyl</td>
<td>thiophanates (1)</td>
<td>10.0–20.0 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not make more than two applications/year or apply more than 40 fl oz/a/year. Do not graze or feed treated vines or hay to livestock.</td>
</tr>
<tr>
<td>Custodia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>azoxystrobin + tebuconazole</td>
<td>QoI (11) triazole (3)</td>
<td>8.6 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not apply more than 25.9 fl oz/A of Custodia per crop. Do not apply more than 0.34 lb a.i. of tebuconazole-containing products/A/season. Do not apply more than 1.5 lb a.i. of azoxystrobin-containing products/A/season.</td>
</tr>
<tr>
<td>Cuprofix Ultra</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>copper sulfate</td>
<td>inorganic (M1)</td>
<td>0.75–2.0 fl oz</td>
<td>Not listed.</td>
<td>Remarks: Consult the label for disease specific recommendations and rates.</td>
</tr>
<tr>
<td>40 Disperse</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Domark 230</td>
<td>-</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>tetraconazole</td>
<td>triazole (3)</td>
<td>4.0–5.0 fl oz</td>
<td>Do not apply after R5.</td>
<td>Remarks: Do not make more than two applications/year. Do not apply more than 10 fl oz/a/season. Do not graze or feed soybean forage or hay to livestock.</td>
</tr>
<tr>
<td>ME</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Echo 720</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>chlorothalonil</td>
<td>chloronitrile (MS)</td>
<td>1.0–2.25 pt</td>
<td>42 days</td>
<td>Remarks: Do not feed soybean or threshings from treated fields to livestock.</td>
</tr>
<tr>
<td>Echo 90 DF</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Echo ZN</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin</td>
<td>QoI (11)</td>
<td>6.0–15.5 fl oz</td>
<td>14 days</td>
<td>Remarks: Do not apply more than 92.3 fl oz of product/a/season or make more than one application at 15.5 fl oz product/a or 0.25 lb ai/a to soybean forage and hay. Do not apply more than 1.5 lb ai/a/season of azoxystrobin-containing products.</td>
</tr>
<tr>
<td>Endura</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>2</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>boscalid</td>
<td>carboximide (7)</td>
<td>3.5–11.0 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not make more than two applications/year. Do not apply more than 22 fl oz/a per year.</td>
</tr>
<tr>
<td>Equation</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin</td>
<td>QoI (11)</td>
<td>6.0–15.5 fl oz</td>
<td>14 days</td>
<td>Remarks: Do not apply more than 92.3 fl oz of product/a/season or make more than one application at 15.5 fl oz product/a or 0.25 lb ai/a to soybean forage and hay. Do not apply more than 1.5 lb ai/a/season of azoxystrobin-containing products.</td>
</tr>
<tr>
<td>Evito 480 SC</td>
<td>x</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>fluoxastrobin</td>
<td>QoI (11)</td>
<td>2.0–5.7 fl oz</td>
<td>Do not apply after R5.</td>
<td>Remarks: Apply no more than 24 fl oz/season. Apply no more than two applications/season.</td>
</tr>
</tbody>
</table>

Efficacy rating: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control
Key: x = labeled, no data; - = not labeled for this disease
* FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.
* Supression only.
Table 3-10. Fungicide efficacy ratings for foliar soybean diseases in Wisconsin (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Alternaria leaf spot</th>
<th>Anthracnose</th>
<th>Capsula leaf spot</th>
<th>Cercospora leaf spot</th>
<th>Cercospora spot blotch</th>
<th>Diplocarpon leaf blight</th>
<th>Fusicoccum sp. + Septoria spp.</th>
<th>Septoria brown spot</th>
<th>Septoria nodorum blotch + Blasticidium graminicola</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evito T</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>fluorastobrin + tebuconazole</td>
<td>Qol (11) + triazole (3)</td>
<td>4-6 fl oz</td>
<td>30 days for grain; 21 days for fodder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortix</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>fluorastobrin + flutriafol</td>
<td>Qol (11) triazole (3)</td>
<td>4.0-6.0 fl oz</td>
<td>R5 growth stage or 30 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preemptor</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>pyraclostobrin</td>
<td>Qol (11)</td>
<td>6.0-12.0 fl oz</td>
<td>21 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headline EC</td>
<td>x</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>thiophanate-methyl</td>
<td>thiophanate (1)</td>
<td>10.0-20.0 fl oz</td>
<td>0.4-0.8 lbs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparix</td>
<td>x</td>
<td>8</td>
<td>7</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>azoxystrobin</td>
<td>Qol (11) + triazole (3)</td>
<td>4.0-8.0 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>6</td>
<td>8</td>
<td>x</td>
<td>propiconazole</td>
<td>Qol (11)</td>
<td>4.0-6.0 fl oz</td>
<td>Apply up to R6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline 480 SC</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>prothioconazole</td>
<td>Qol (11)</td>
<td>2.5-5.0 fl oz</td>
<td>21 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine 3.6F</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>7</td>
<td>x</td>
<td>7</td>
<td>x</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>3.0-4.0 fl oz</td>
<td>21 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prowheat 3.6F</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>6</td>
<td>x</td>
<td>propiconazole</td>
<td>Qol (11) + triazole (3)</td>
<td>6.0-15.5 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadris Top</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>8</td>
<td>azoxystrobin</td>
<td>Qol (11) triazole (3)</td>
<td>8.0-14.0 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- Do not apply more than 12 fl oz per acre per year. Do not make more than two applications per season.
- Do not apply more than 12 fl oz/a/season. Do not feed treated soybean as forage or allow animals to graze.
- Apply no more than two applications/year. Do not graze or feed treated vines or hay to livestock.
- Maximum application of 12 fl oz/a per season.
- Do not make more than two applications/year. Do not graze or feed treated vines or hay to livestock.
- Do not apply more than three applications or 12 fl oz/a per season.
- Do not apply more than two applications per season. Do not apply more than 16 fl oz/a per season.
- Do not apply more than three applications per season. Do not apply more than 12.9 fl oz/a/season.
- Do not apply more than three applications per season. Do not apply more than 12 fl oz/a per season.
- Apply up to R6
- Do not apply more than 12 fl oz/season or more than 0.22 lb ai/a of difenoconazole-containing products/season. Do not apply more than 1.5 lb ai/a of azoxystrobin-containing products per season. Do not feed soybean hay, forage, and silage.

Efficacy rating: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control

Key: x = labeled, no data; - = not labeled for this disease

* FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.

* Suppression only.
<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Alternaria leaf spot</th>
<th>Anthracnose</th>
<th>Cercospora leaf spot</th>
<th>Frogeye leaf spot</th>
<th>Powdery mildew</th>
<th>Septoria brown spot</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadris Xtra</td>
<td>x x x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin</td>
<td>Qol (11) triazole (3)</td>
<td>4.0–6.8 fl oz</td>
<td>30 days</td>
<td>Remarks: Do not apply more than 13.6 fl oz/a/season. Do not graze forage within 14 days of application. Do not apply more than 0.072 lb ai/a/year of cyproconazole-containing products. Do not apply more than 1.5 lb ai/a/year of azoxystrobin-containing products. Do not use soybean forage or hay as livestock feed if making more than one application at 6.8 fl oz product/a.</td>
</tr>
<tr>
<td>Quilt</td>
<td>x 8 4 8 x 6 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin</td>
<td>Qol (11) triazole (3)</td>
<td>14.0–20.5 fl oz</td>
<td>21 days for seed and 0 days for forage and hay</td>
<td>Remarks: Do not apply more than 42 fl oz/a/year. Do not apply more than 0.34 lb ai of propiconazole-containing products/a/year. Do not apply more than 1.5 lb ai of azoxystrobin-containing products/a/year.</td>
</tr>
<tr>
<td>Quilt Xcel</td>
<td>x 8 4 8 x 6 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin</td>
<td>Qol (11) triazole (3)</td>
<td>10.5–21.0 fl oz</td>
<td>Apply up to stage R6</td>
<td>Remarks: Do not apply more than 42 fl oz/a/crop. Do not apply more than 0.34 lb ai of propiconazole-containing products/a/year. Do not apply more than 1.5 lb ai of azoxystrobin-containing products/a/year.</td>
</tr>
<tr>
<td>Stratego YLD</td>
<td>x 8 4 8 x x 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>prothiocarbazone +</td>
<td>triazole (3) Qol (11)</td>
<td>4.0–4.65 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not apply more than three applications per season. Do not apply more than 13.95 fl oz/a/season. Do not graze or feed soybean forage or hay. Do not apply more than two sequential applications of Stratego YLD or any other Group 11-fungicide without alternating with a fungicide from another group.</td>
</tr>
<tr>
<td>TebuStar 3.6L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>3.0–4.0 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not apply more than three applications season. Do not apply more than 12 fl oz/a per season.</td>
</tr>
<tr>
<td>TebuZol</td>
<td>-</td>
<td>Remarks: Do not apply more than 12 fl oz/a/year. Do not apply more than 0.5 lb ai propiconazole-containing products/a/year.</td>
</tr>
<tr>
<td>Tilt</td>
<td>- 8 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>4.0–6.0 fl oz</td>
<td>Apply up to stage R6</td>
<td>Remarks: Do not apply more than 12 fl oz/a/year. Do not apply more than 0.34 lb ai propiconazole-containing products/a/year.</td>
</tr>
<tr>
<td>Topaz</td>
<td>-</td>
<td>4 8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4.0–6.0 fl oz</td>
<td>Apply up to R6</td>
<td>Remarks: Do not apply more than 2 lb/a/year. Do not graze or feed treated vines or hay to livestock.</td>
</tr>
<tr>
<td>Topsin M 70 WP</td>
<td>x 4 8 x - 4 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5 thiophanate-methyl</td>
<td>-</td>
<td>thiophanates (1)</td>
<td>-</td>
<td>0.5–1.0 lb</td>
<td>21 days</td>
<td></td>
<td>Remarks: Do not apply more than 28 fl oz/a/season. Do not apply more than three applications per growing season. No single application may exceed 14 fl oz/a. Only one application at 14 fl oz/a may be made to any one field during a single growing season. Apply only to soybean harvested for dry seed. Only soybean may be rotated to treated fields. Do not feed forage or hay or permit animals to graze.</td>
</tr>
<tr>
<td>Topsin M WDG</td>
<td>-</td>
<td>x 8 x</td>
<td>-</td>
<td>Remarks: Do not apply more than 3 applications per year. One application at 14 fl oz/a may be made to any one field during a single growing season. Apply only to soybean harvested for dry seed. Only soybean may be rotated to treated fields. Do not feed forage or hay or permit animals to graze.</td>
</tr>
<tr>
<td>Topsin M WSB</td>
<td>x</td>
<td>x 8</td>
<td>-</td>
<td>4</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Remarks: Do not apply more than 28 fl oz/a/season. Do not apply more than three applications per growing season. No single application may exceed 14 fl oz/a. Only one application at 14 fl oz/a may be made to any one field during a single growing season. Apply only to soybean harvested for dry seed. Only soybean may be rotated to treated fields. Do not feed forage or hay or permit animals to graze.</td>
</tr>
<tr>
<td>Topguard</td>
<td>-</td>
<td>x 4 8 x</td>
<td>-</td>
<td>x</td>
<td>n</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>flutriafol</td>
<td>triazole (3)</td>
<td>7.0–14.0 fl oz</td>
<td>21 days</td>
<td>Remarks: Do not apply more than 28 fl oz/a/season. Do not apply more than three applications per growing season. No single application may exceed 14 fl oz/a. Only one application at 14 fl oz/a may be made to any one field during a single growing season. Apply only to soybean harvested for dry seed. Only soybean may be rotated to treated fields. Do not feed forage or hay or permit animals to graze.</td>
</tr>
<tr>
<td>Triapro A</td>
<td>x</td>
<td>x x x x x x</td>
<td>-</td>
<td>- x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>benzovindiflupyr</td>
<td>carboximides (7)</td>
<td>4 fl oz</td>
<td>14 days</td>
<td>Remarks: Apply in a tank mix with labeled rate of a registered fungicide containing FRAC group 3 and 11 active ingredients. Do not apply more than two applications before switching to a non-group 7 mode of action. The use of a spreading/penetrating adjuvant is recommended.</td>
</tr>
</tbody>
</table>

Efficacy rating: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control
Key: x = labeled, no data; - = not labeled for this disease
a FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.

Continued on next page
Table 3-10. Fungicide efficacy ratings for foliar soybean diseases in Wisconsin (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Alternaria leaf spot</th>
<th>Anthracnose</th>
<th>Cercospora leaf spot</th>
<th>Frogeye leaf spot</th>
<th>Pod and stem blight</th>
<th>Powdery mildew</th>
<th>Septoria brown spot</th>
<th>Soybean rust</th>
<th>White mold</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC codea)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivapro B</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>azoxystrobin + propiconazole</td>
<td>QoI (11) + triazole (3)</td>
<td>10.5 fl oz</td>
<td>Do not apply after the R6 growth stage</td>
</tr>
<tr>
<td>Viathon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>potassium phosphite + tebuconazole</td>
<td>Phosphonate (33) + triazole (3)</td>
<td>1.5 pt</td>
<td>21 days</td>
</tr>
</tbody>
</table>

Remarks: Do not apply more than 2 applications per year. Do not apply more than 42 fl oz per acre per year.

Remarks: Recommended to tank-mix 6 fl. oz. per acre Quilt fungicide. Do not apply more than 4.3 pints of Viathon per year.

Efficacy rating: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control

Key: x = labeled, no data; - = not labeled for this disease

a FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.

b Suppression only.

Table 3-11. Management recommendations for Sclerotinia stem rot (white mold)

<table>
<thead>
<tr>
<th>Field history (% disease)</th>
<th>Management recommendationsa,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Plant pathogen-free seed. Maintain current row width and plant population. Avoid crops that are susceptible to white mold in the rotation.</td>
</tr>
<tr>
<td>< 5%</td>
<td>If disease is…</td>
</tr>
<tr>
<td>(1) present in pockets:</td>
<td>Avoid planting susceptible soybean varieties. Maintain current row width and plant population. Rotate out of soybean for at least 1 year.</td>
</tr>
<tr>
<td>(2) spread throughout field:</td>
<td>Plant partially resistant varieties. Maintain current row width, but reduce plant population if planting less-resistant varieties. Rotate out of soybean for at least 1 year.</td>
</tr>
<tr>
<td>5–25%</td>
<td>If soybean variety is…</td>
</tr>
<tr>
<td>(1) partially resistant:</td>
<td>Maintain current row width and plant population. Rotate out of soybean for at least 1 year.</td>
</tr>
<tr>
<td>(2) moderately susceptible:</td>
<td>Widen row width to 15 to 30 inches and lower seeding rate accordingly. Rotate out of soybean for at least 1 year. Consider treating seed fields with a fungicide at flowering.</td>
</tr>
<tr>
<td>25–50%</td>
<td>Select partially resistant varieties. Maintain current row width but lower the plant population. Rotate 1 to 2 years out of soybean. Consider treating field with a fungicide at flowering.</td>
</tr>
<tr>
<td>> 50%</td>
<td>Plant varieties with as much resistance as possible. Narrow row spacing maybe acceptable for varieties with good resistance. If planting 30-inch rows, plant at 125,000 seeds/a. Rotate 2 to 3 years out of soybean. Fungicide treatment necessary for susceptible varieties — apply when flowers are present, especially on lower half of stems (R1-R3 growth stage).</td>
</tr>
</tbody>
</table>

a Variety resistance rankings: resistant = <5% mortality; high yield; partially resistant = 5–25% mortality, high yield; moderately susceptible = 26–50% mortality, variable yield; susceptible = 26–50% mortality, low yield; highly susceptible = >50% mortality, low yield

b Optimum seeding rates for fields with a high risk for white mold: 180,000 plants/a for 7.5- and 15-inch rows and 125,000 plants/a for 30-inch rows.

Source: Soybean Plant Health, University of Wisconsin; fyi.uwex.edu/fieldcroppathology/soybean_pests_diseases/
FORAGE AND PASTURE PEST MANAGEMENT
Wisconsin has millions of acres of harvested forages and pastures that serve as the base of our livestock enterprises. Weeds can cause economic losses in forages and pastures unless management practices are in place to contain them. This section will discuss weed management in legume forages and then in grass pastures.

Forage legumes
Weed management tools are much more limited in forage crops compared to grain crops. The only opportunities to use mechanical methods of weed management are during seedbed preparation before establishment or when harvesting forage. As a result, growers rely upon herbicides and competition from forage to suppress weeds. After the seeding year, weeds are seldom a problem as long as the stand remains vigorous and dense. Weedy fields usually occur when stands decline (a sign that rotation to another crop is required) or are stressed. Weeds can be suppressed with mowing (or grazing); however, weed species can affect feed quality and palatability. Herbicide use is common in newly seeded stands but less common in established stands. Legume establishment with a cover crop is discussed in the Small Grains section of this manual.

Establishing forage legumes without a cover crop (direct seeding)
Historically, small-seeded legumes in Wisconsin have been sown with a small grain cover crop, but today most growers establish forage legumes without a companion crop. (See the Small Grains section for details about weed management when legumes are seeded with cereals.) While direct seeding can enhance alfalfa yields in the establishment year, small-seeded legumes grow slowly, leaving the soil surface exposed and subject to erosion. Therefore, direct seeding on erodible slopes is not recommended. In these cases, consider planting with a no-till drill or using a temporary cover crop as discussed later. Because small-seeded legumes are poor competitors until they are established, adequate weed control in the seeding phase is important to enhance desirable forage quantity and quality.

The postemergence herbicides available in forages make it possible to practice the IPM principle of “treat as needed.” If no preplant-incorporated herbicide is used, scout fields weekly after legume emergence. Consider using the appropriate herbicide or herbicide combination if weed cover is moderate to high. There is no need to treat if weed cover is low.

The impact of weeds on forage quality varies but is primarily affected by the weeds present and their density and growth stage when harvested. Table 4-1 compares the relative seriousness of common annual and perennial weeds in forages. These rankings are based on laboratory analyses and feeding studies with animals done by several Midwestern universities.

Some of these species may not be particularly objectionable in terms of forage value but may present other problems. For example, pigweed and lambsquarters may be nutritious but can also accumulate nitrates, especially in nitrogen-rich soils and when rain follows a prolonged dry period. Cocklebur and nightshade are in the “serious” category because they contain poisonous compounds. Pennycress imparts a garlicky flavor to milk.

The herbicides listed in tables 4-2a and 4-2b control many weeds in direct-seeded legume establishment. Most treatments have little effect on

<table>
<thead>
<tr>
<th>Relative seriousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
</tr>
<tr>
<td>cocklebur</td>
</tr>
<tr>
<td>eastern black nightshade</td>
</tr>
<tr>
<td>giant foxtail</td>
</tr>
<tr>
<td>giant ragweed</td>
</tr>
<tr>
<td>smartweeds</td>
</tr>
<tr>
<td>yellow foxtail</td>
</tr>
<tr>
<td>green foxtail</td>
</tr>
<tr>
<td>lambquarters</td>
</tr>
<tr>
<td>pennycress</td>
</tr>
<tr>
<td>shepherd’s purse</td>
</tr>
<tr>
<td>velvetleaf</td>
</tr>
<tr>
<td>wild mustard</td>
</tr>
<tr>
<td>common ragweed</td>
</tr>
<tr>
<td>pigweeds</td>
</tr>
<tr>
<td>slight</td>
</tr>
<tr>
<td>Canada thistle</td>
</tr>
<tr>
<td>quackgrass and other grasses</td>
</tr>
<tr>
<td>dandelion</td>
</tr>
<tr>
<td>white cockle</td>
</tr>
</tbody>
</table>

Table 4-1. Impact of common weeds on forage quality
Table 4-2a. Seedling legume tolerance and herbicide effectiveness on weeds commonly found in establishing legumes seeded without a cover crop

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Labeled crops</th>
<th>Mode of action</th>
<th>Crop stage (min. leaves)</th>
<th>Grasses</th>
<th>Broadleaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buctril</td>
<td>al</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Buctril 4EC</td>
<td>al</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Butyrac 200</td>
<td>al, bf</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Eptam 20G</td>
<td>al, bf, cl</td>
<td>8</td>
<td>PPI</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Eptam 7E</td>
<td>al, bf, cl</td>
<td>8</td>
<td>PPI</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Extreme</td>
<td>al, cl</td>
<td>2,9</td>
<td>2</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>al, bf, cl</td>
<td>3, 2</td>
<td>0</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Pursuit</td>
<td>al, cl</td>
<td>2, 2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Raptor</td>
<td>al, cl</td>
<td>2, 2</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>al, bf, cl</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Select 2EC</td>
<td>al, cl</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Select Max</td>
<td>al, bf</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Treflan TR-10</td>
<td>al</td>
<td>3</td>
<td>PPI</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Abbreviations: al = alfalfa; bf = birdsfoot trefoil; cl = clover
Efficacy ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

* Adapted from Extension publication Alfalfa Management Guide (NCR547), 2011.
* Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.
* Labels recommend application when alfalfa has 3-4 TL to remove non-transgenic alfalfa seedling.
* If column is marked with an x, see Table 4-2b for caution statement.

Table 4-2b. Cautionary statements for herbicides of commonly found weeds in establishing legumes seeded without a cover crop

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Cautionary statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buctril</td>
<td>Do not treat alfalfa stressed by moisture, insect injury, or other causes.</td>
</tr>
<tr>
<td>Buctril 4EC</td>
<td>Do not treat alfalfa stressed by moisture, insect injury, or other causes.</td>
</tr>
<tr>
<td>Butyrac 200</td>
<td>Note 60 day PHI for new seedings</td>
</tr>
<tr>
<td>Eptam 20G</td>
<td>Do not apply if atrazine has been applied within 12 months.</td>
</tr>
<tr>
<td>Eptam 7E</td>
<td>Do not apply if atrazine has been applied within 12 months.</td>
</tr>
<tr>
<td>Extreme</td>
<td>If broadcasted, use only on Roundup Ready alfalfa varieties</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>Do not use flood jet nozzle tips.</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>If broadcasted, use only on Roundup Ready alfalfa varieties</td>
</tr>
<tr>
<td>Select 2EC</td>
<td>Do not use flood nozzle tips.</td>
</tr>
<tr>
<td>Select Max</td>
<td>Do not use flood nozzle tips.</td>
</tr>
</tbody>
</table>
perennial weeds, and special control measures for such species should be used while the field is in other crops.

Herbicides for establishing alfalfa

Buctril 2EC

Active Ingredient(s): bromoxynil
Rate: 1.0-1.5 pt/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: 4
Pest Timing: POST. Treat when annual broad-leaves are 2 inches or less in height or 1 inch in diameter and have no more than 4 leaves.
Remarks: Controls common broadleaf weeds in alfalfa in either direct seeding or with a companion crop. May not adequately control overwintered weeds. Significant alfalfa injury may occur if the temperature exceeds 70°F within 3 days after application. Several factors influence the injury potential of Buctril. The most important are stage of alfalfa growth (seedlings with less than four trifoliate leaves are very sensitive), presence of atrazine and/or Eptam residues (enhance injury), temperature and relative humidity (hot, humid conditions present a greater risk than dry conditions), and other causes of stress. Do not treat alfalfa stressed by moisture shortage or excess, insect injury, or other causes. Use spray volumes of at least 20 gal/a, flat fan nozzles, and 30 psi pressure. It can be tank mixed with Pursuit to improve control of pigweed, chickweed, and nightshade. Alfalfa can be treated at the 2 trifoliate leaf stage if reduced rates of Buctril (0.25-0.38 pt/a) are used. Fields treated with Buctril can be applied to seeding alfalfa that has been undersowed with small grains as long as grains are not past the boot stage.

Butyrac 200

Active Ingredient(s): 2,4-D amine
Rate: 1-3 qt/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: 0. Treat any time after emergence
Pest Timing: POST. Treat when annual broad-leaf weeds are 3 inches or less in height.
Remarks: Controls many annual broadleaf weeds but is weak on smartweed and mustards and does not control perennial weeds or grasses. Alfalfa should be actively growing and free of stress, and no rainfall should occur within 7-10 days to reduce risk of crop injury. Seedlings may show temporary stunting, particularly if higher rates are applied during hot, humid conditions. Do not apply after the first cutting. Butyrac can be tank mixed with Buctril, Post, Pursuit, Raptor, or Select Max.

Eptam 7E

Active Ingredient(s): EPTC
Rate: 2.25-4.5 pt/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: NA. Apply to a smooth, dry seedbed just before planting and immediately incorporate to a depth of 2-3 inches to prevent herbicide loss through evaporation. Where possible, simultaneously apply and incorporate in one operation.
Pest Timing: PPI.
Remarks: Provides good control of annual grasses and many annual broadleaf weeds. Use the lower rate on coarse-textured soils. Eptam is ineffective on peat or muck soils. Complete control of any perennial weed should not be expected. Temporary stunting of the small-seeded legume and sealing of the first leaves may occur. Injury is likely if Eptam is applied during cool wet weather, at high rates, or if it is poorly incorporated. Do not seed bromegrass, fescue, ryegrass, orchardgrass, timothy, or small grain since these will be killed. Do not apply if atrazine has been applied within 12 months as severe injury may result. Eptam can be mixed with liquid fertilizer solution or impregnated onto dry fertilizer for simultaneous application.

Buctril 4EC

Active Ingredient(s): bromoxynil
Rate: 0.5-0.75 pt/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: 4
Pest Timing: POST. Treat when annual broad-leaves are 2 inches or less in height or 1 inch in diameter and have no more than 4 leaves.
Remarks: Controls common broadleaf weeds in alfalfa in either direct seeding or with a companion crop. May not adequately control overwintered weeds. Significant alfalfa injury may occur if the temperature exceeds 70°F within 3 days after application. Several factors influence the injury potential of Buctril. The most important are stage of alfalfa growth (seedlings with less than four trifoliate leaves are very sensitive), presence of atrazine and/or Eptam residues (enhance injury), temperature and relative humidity (hot, humid conditions present a greater risk than dry conditions), and other causes of stress. Do not treat alfalfa stressed by moisture shortage or excess, insect injury, or other causes. Use spray volumes of at least 20 gal/a, flat fan nozzles, and 30 psi pressure. It can be tank mixed with Pursuit to improve control of pigweed, chickweed, and nightshade. Alfalfa can be treated at the 2 trifoliate leaf stage if reduced rates of Buctril (0.25-0.38 pt/a) are used. Fields treated with Buctril can be applied to seeding alfalfa that has been undersowed with small grains as long as grains are not past the boot stage.

Eptam 20G

Active Ingredient(s): EPTC
Rate: 15 lb/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: NA. Apply to a smooth, dry seedbed just before planting and immediately incorporate to a depth of 2-3 inches to prevent herbicide loss through evaporation. Where possible, simultaneously apply and incorporate in one operation.
Pest Timing: PPI.
Remarks: Provides good control of annual grasses and many annual broadleaf weeds. Use the lower rate on coarse-textured soils. Eptam is ineffective on peat or muck soils. Complete control of any perennial weed should not be expected. Temporary stunting of the small-seeded legume and sealing of the first leaves may occur. Injury is likely if Eptam is applied during cool wet weather, at high rates, or if it is poorly incorporated. Do not seed bromegrass, fescue, ryegrass, orchardgrass, timothy, or small grain since these will be killed. Do not apply if atrazine has been applied within 12 months as severe injury may result. Eptam can be mixed with liquid fertilizer solution or impregnated onto dry fertilizer for simultaneous application.

Extreme

Active Ingredient(s): imazethapyr + glyphosate
Rate: 2.2-4.4 pt/a
Adjuvants: NIS, AMS. Add 1 pt of nonionic surfactant + 8.5-17 lb/100 gal of ammonium sulfate. Adding other adjuvants (e.g., methylated seed oil) has the potential to increase crop injury and is not recommended.
Minimum # of Alfalfa True Leaves: 2
Pest Timing: POST. Treat when annual weeds are 1-3 inches tall or rosettes are 1-3 inches wide.
Remarks: The combination of glyphosate and imazethapyr are effective at controlling most weed species encountered in seedlings alfalfa in Wisconsin. The addition of the imazethapyr will provide residual control that glyphosate does not. Temperatures below 50°F can reduce
effectiveness. Following application, plants may be temporarily stunted. Up to 10% of the purchased seed may not have the Roundup Ready gene; therefore, applying glyphosate when alfalfa has 3–4 trifoliate leaves is recommended to eliminate susceptible plants, regardless of weed populations.

Poast Plus
Active Ingredient(s): sethoxydim
Rate: 18–36 fl oz/a
Adjuvants: COC, DASH, SUNDANCE, N, AMS. Add 1 qt/a of a crop oil concentrate or 1 pt/a of Dash HC or Sundance HC for all Poast Plus applications.
Minimum # of Alfalfa True Leaves: 0
Pest Timing: PRE. Treat when annual grasses are 4–8 inches tall and actively growing and before the alfalfa gets large enough to reduce interception of the spray solution.
Remarks: Provides control of annual grasses in newly seeded alfalfa. For best control, treat before the first mowing. Apply Poast Plus in 5–20 gal/a of spray solution using 40–60 psi pressure. Do not use flood jet nozzle tips. Poast Plus can be tank mixed with Pursuit or Raptor to broaden the spectrum of weeds controlled. Poast Plus can also be applied to kill oats used as a temporary companion crop by an application when the oats are 4–6 inches tall.

Prowl H2O
Active Ingredient(s): pendimethalin
Rate: 1.1–2.1 pt/a
Adjuvants: none.
Minimum # of Alfalfa True Leaves: 2–Apply to seedlings when alfalfa has two or more trifoliolate leaves but is less than 6 inches in height.
Pest Timing: PRE. Will only control weeds that have not yet emerged
Remarks: Applications are effective at preventing the emergence of many small seeded grasses and broadleaf weeds, but used alone this product has limited value in weed control for alfalfa seeding establishment in Wisconsin as many weeds have emerged by this time frame.

Pursuit
Active Ingredient(s): imazethapyr
Rate: 3–6 fl oz/a
Adjuvants: NIS, AMS, COC, MSO, N, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions are dry, consider using a crop oil concentrate (1–2 gal/100 gal) or a methylated seed oil (1–2 gal/100 gal) instead of a surfactant. For all applications, also add 28% liquid nitrogen (1.25–2.5 gal/100 gal) or ammonium sulfate (12–15 lb/100 gal) to the spray solution.
Minimum # of Alfalfa True Leaves: 2
Pest Timing: POST. Treat when annual weeds are 1–3 inches tall or rosettes are 1–3 inches wide.
Remarks: Controls many annual broadleaf and several annual grass weeds. Provides residual control of later emerging weeds up to a month after application. May be tank mixed with Butctril, Butyraz, Poast Plus, or Select Max to increase spectrum of weeds controlled. Injury can occur, especially if alfalfa plants are stressed and not actively growing. Delay applications for 48 hours when the air temperatures stay at or below 40°F for 10 or more hours. Following application, alfalfa may be temporarily stunted. Several weed species in Wisconsin have documented resistance to imidazolinone herbicides such as Pursuit. If applications appear to have not worked, please consult your local county Extension agent for assistance in determining if you have a resistant population in your field.

Raptor
Active Ingredient(s): imazamox
Rate: 4–6 fl oz/a
Adjuvants: NIS, AMS, COC, MSO, N, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions are dry, consider using a crop oil concentrate (1–2 gal/100 gal) or a methylated seed oil (1–2 gal/100 gal) instead of a surfactant. For all applications, also add 28% liquid nitrogen (2.5 gal/100 gal) or ammonium sulfate (12–15 lb/100 gal) to the spray solution.
Minimum # of Alfalfa True Leaves: 2
Pest Timing: POST. Treat when annual weeds are 1–3 inches tall or rosettes are 1–3 inches wide.
Remarks: Controls many annual broadleaf and several annual grass weeds. Provides residual control of later emerging weeds up to a month after application. May be tank mixed with Butctril, Butyraz, Poast Plus, or Select Max to increase spectrum of weeds controlled. Injury can occur, especially if alfalfa plants are stressed and not actively growing. Delay applications for 48 hours when the air temperatures stay at or below 40°F for 10 or more hours. Following application, alfalfa may be temporarily stunted. Several weed species in Wisconsin have documented resistance to imidazolinone herbicides such as Pursuit. If applications appear to have not worked, please consult your local county Extension agent for assistance in determining if you have a resistant population in your field.

Select 2EC
Active Ingredient(s): clethodim
Rate: 6–16 fl oz/a
Adjuvants: NIS, COC, MSO, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions dry, consider using a crop oil concentrate or methylated seed oil at 0.25% vol/vol. If difficult-to-control grass species are present, consider adding 2.5–4.0 lb/a of ammonium sulfate to improve control.
Minimum # of Alfalfa True Leaves: 0
Pest Timing: POST. Treat when annual weeds are 2–6 inches tall and actively growing.
Remarks: Controls grasses during the establishment of alfalfa grown for hay, silage, green chop, or direct grazing. Apply in 5–20 gal/a of spray solution using 30–60 psi pressure. Do not use flood nozzle tips. To control volunteer cereals in summer-seeded alfalfa, treat in the late summer or early fall when the cereals are 4–6 inches tall. It
can also be used to kill oats planted as a temporary companion crop by an application when the oats are 4-6 inches tall. It can be tank mixed with Pursuit or Butyrac in new seedings for broadleaf weed control but do not do so unless the feeding, grazing, and harvesting restriction on these labels can be observed.

Select Max

Active Ingredient(s): clethodim
Rate: 9-32 fl oz/a
Adjuvants: NIS, CMC, MSO, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended.

If weeds are large and growing conditions dry, consider using a crop oil concentrate or methylated seed oil at 0.25% vol/vol. If difficult-to-control grass species are present, consider adding 2.5-4.0 lb/a of ammonium sulfate to improve control.

Minimum # of Alfalfa True Leaves: 0 Treat any time after emergence
Pest Timing: POST. Treat when annual grasses are 2-6 inches tall and actively growing.
Remarks: Controls grasses during the establishment of alfalfa grown for hay, silage, green chop, or direct grazing. Apply in 5-20 gal/a of spray solution using 30-60 psi pressure. Do not use flood nozzle tips. To control volunteer cereals in summer-seeded alfalfa, treat in the late summer flood nozzle tips. To control volunteer cereals in new seedings for broadleaf weed control but do not do so unless the feeding, grazing, and harvesting restriction on these labels can be observed.

Treflan TR-10

Active Ingredient(s): trifluralin
Rate: 5.0-7.5 lb/A
Adjuvants: none.
Minimum # of Alfalfa True Leaves: Apply prior to planting and incorporate within 24 hours to a depth of 2-3 inches
Pest Timing: PRE.
Remarks: Provides control of annual grasses and pigweed species, but has little effect on ragweed, velvetleaf, and weeds in the mustard family. Do not seed forage grasses such as orchardgrass with the alfalfa. It will not control quackgrass or wiregrass muddy emerging from rhizomes. Select application rate based on soil texture (see supplemental label). It can be simultaneously applied with a liquid fertilizer or impregnated onto dry fertilizer.

Summer seedings

Most growers who seed alfalfa in the summer find that fewer weeds germinate at this time of the year and therefore preplant-incorporated herbicides are not needed. Summer seedings that germinate in late summer (velvetleaf, pigweed, crabgrass, and wild proso millet) typically do not grow very tall and die with the first frost. If ample soil moisture is present, treatment of these weeds is not needed if populations are low to moderate. If dry conditions occur, treatment is recommended to ensure acceptable stand establishment. If winter annuals (e.g. shepherd’s purse, chickweed, and pennycress) are a moderate density, treatment in the fall is warranted as they are quick to flower the following spring. These weeds may reduce forage quality in the second year but rarely impact yield. If concerned about forage quality the spring after a summer seeding, we recommend scouting fields routinely every other week into the early fall to see if a postemergence treatment is needed.

When summer seedings follow wheat, volunteer wheat is often a serious problem. This is less likely if fields are moldboard plowed before seeding alfalfa. When fields are disked, chisel plowed, or no-till seeded, winter wheat often germinates and competes vigorously with the alfalfa, especially the following spring. Volunteer wheat densities greater than or equal to 7 plants per square foot can reduce alfalfa densities. If volunteer wheat threatens alfalfa establishment, apply Poast Plus, Select, glyphosate (Roundup Ready alfalfa only), or Raptor with an appropriate additive when wheat is 2-6 inches tall and actively growing. Do not wait until the spring or early summer to treat as control will be much more difficult. Poast Plus and Select also kill volunteer oats, but these will die during the winter and seldom require treatment.

Weed management in established forage legumes

Removing weeds from forage crops seldom increases total yield because the weeds are harvested along with the crop. However, since weeds are often less palatable, lower in protein, and less digestible than forages, controlling weeds can improve forage quality.

Some believe that weed control may prolong the productive life of forage stands by preventing competitive weeds, such as quackgrass and dandelions, from crowding out the forage. However, if weeds are the only stress present, they seldom affect forage stand density in Wisconsin. Other factors have been found to play a more important role in determining stand life. These include cold winter temperatures, cutting schedule, and disease or insect problems.

Established stands of forage legumes compete effectively with many annual and perennial weeds. If weeds appear, inadequate soil fertility, low soil pH, poor soil drainage, plant diseases, or other factors hampering legume growth may be the cause. Winter annual weeds, such as shepherd’s purse, chickweed, and pennycress, may become a problem if conditions the previous fall were suitable for their establishment. Some perennial weeds, such as white cockle, yellow rocket, dandelions, hoary alyssum, and quackgrass, persist despite legume competition. These weeds can be kept from spreading by harvesting the infested legume before weed seeds are produced. If seed does mature before the legume is ready for harvest, the forage should be ensiled as this will kill nearly all weed seeds.

Base herbicide selection decisions in established legumes on the weed species to be controlled and forage stand density. For alfalfa, treat only if the field has an average of 55 stems or a minimum of 4 crowns per
Herbicides for established alfalfa

Butyrac 200

Active Ingredient(s): bromoxynil
Rate: 1.0-3.0 qt/a
Adjuvants: none.
Maximum alfalfa height that can be treated (inches): 3
Pest Timing: POST. Treat when annual broad-leaves are less than 3 inches tall or wide.

Remarks: Controls common broadleaf weeds in alfalfa. May not adequately control overwintered weeds. Alfalfa should be healthy and actively growing for greatest crop safety. Significant alfalfa injury may occur if the temperature will exceed 90°F up to 3 days after application. Some stem twisting and malformation may occur, but plants usually outgrow these symptoms.

Chateau

Active Ingredient(s): (flumioxazin)
Rate: 4 oz/a
Adjuvants: none. See remarks
Maximum alfalfa height that can be treated (inches): 6
Pest Timing: PRE. Make applications before emergence of target weed species as Chateau has only preemergence activity on annuals and germinating perennial weeds that are historically difficult to control once established.

Remarks: Can be impregnated onto dry fertilizer for simultaneous application. Do not add any adjuvant or product formulated as an emulsified concentrate (EC). Addition of adjuvant or tank mixing with an EC product will cause Chateau to also exhibit postemergence activity similar to a contact herbicide. While control of emerged annual weeds can result, damage will occur to alfalfa if it has resumed growth.

Extrem

Active Ingredient(s): imazethapyr + glyphosate
Rate: 2.2-4.4 pt/a
Adjuvants: NIS, AMS. Add 1 pt of nonionic surfactant + 8.5-17 lb/100 gal of ammonium sulfate. Adding other adjuvants (e.g. methylated seed oil) has the potential to increase crop injury and is not recommended.

Maximum alfalfa height that can be treated (inches): 3
Pest Timing: PRE, POST. Treat when annual weeds are 1-3 inches in height or diameter.

Remarks: The combination of glyphosate and imazethapyr are effective at controlling most weed species encountered in seedling alfalfa in Wisconsin. The addition of the imazethapyr will provide residual control that glyphosate does not. Temperatures below 50°F can reduce effectiveness. Following application, plants may be temporarily stunted.

Metribuzin

Active Ingredient(s): metribuzin
Rate: 0.33-1.33 lb/a
Adjuvants: none.
Maximum alfalfa height that can be treated (inches): 3
Pest Timing: PRE, POST. Treat before weeds have emerged or are less than 2 inches in height or diameter

Remarks: Is effective on annual and perennial weeds in pure alfalfa stands and when mixed with forage grasses. Use lower rates on sandy loam and loamy sand soils, but do not apply on sandy soils with a pH greater than 7.5. Expect some injury to forage grasses after application if present. Stresses such as drought, disease, low fertility, overcutting, or insects may increase the likelihood of alfalfa injury. Metribuzin can be impregnated onto dry fertilizer for simultaneous application. Do not apply if the alfalfa stand density is below threshold, as yields will be reduced.

Poast Plus

Active Ingredient(s): sethoxydim
Rate: 18-36 fl oz/a
Adjuvants: COC, DASH, SUNDANCE, N, AMS. Add 1 qt/a of a crop oil concentrate or 1 pt/a of Dash HC or Sundance HC for all Poast Plus applications.

Maximum alfalfa height that can be treated (inches): any
Pest Timing: POST. Treat when annual grasses are 4-8 inches tall and actively growing and before the alfalfa gets large enough to reduce interception of the spray solution.

Remarks: Effective at suppressing perennial grasses when applied before first cutting or used in the summer to control annual grasses that appear following the second or third cutting. Forage grasses, if present will be stunted or killed. Control will be reduced if grassy weeds are under stress, especially from drought, or if they have been previously mowed. Use 40-60 psi pressure, 5-20 gal/a spray solution, and flat fan or hollow cone nozzles to apply.

Prowl H2O

Active Ingredient(s): pendimethalin
Rate: 1.1-4.2 qt/a
Adjuvants: none.
Maximum alfalfa height that can be treated (inches): 6
Pest Timing: PRE. Will only control weeds that have not yet emerged

Remarks: Effective at preventing the emergence of many small seeded grasses and broadleaf weeds and a good fit for thinning stands with annuals weeds. Its effectiveness on winter annuals is variable unless rates greater than 2 qt/a are utilized.

Pursuit

Active Ingredient(s): imazethapyr
Rate: 3-6 fl oz/a
Adjuvants: NIS, AMS, COC, MSO, N, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions are dry, consider using a crop oil concentrate (5 qt/100 gal) or a methylated seed oil (4 qt/100 gal) instead of a surfactant. For all applications, also add 28% liquid nitrogen (1.25-2.5 gal/100 gal) or ammonium sulfate (12-15 lb/100 gal) to the spray solution.

Maximum alfalfa height that can be treated (inches): 3
Pest Timing: PRE, POST. Apply in the spring or fall to annual weeds that have not yet emerged or are 1-3 inches in height or diameter.

Remarks: Effective in suppressing annual weeds, but not perennial weeds in pure alfalfa stands and when mixed with forage grasses. Expect some injury to forage grasses after application. Good herbicide coverage is essential for adequate weed control; weeds treated after a recent harvest may be inadequately controlled. Several weed species are resistant to imidazolinone herbicides such as Pursuit. If applications appear to have not worked, please consult your local county Extension agent for assistance in determining if you have a resistant population in your field.

Raptor

Active Ingredient(s): imazamox
Rate: 4-6 fl oz/a
Adjuvants: NIS, AMS, COC, MSO, N, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions are dry, consider using a crop oil concentrate (5 qt/100 gal) or a methylated seed oil (4 qt/100 gal) instead of a surfactant. For all applications, also add 28% liquid nitrogen (1.25-2.5 gal/100 gal) or ammonium sulfate (12-15 lb/100 gal) to the spray solution.
surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions are dry, consider using a crop oil concentrate (1-2 gal/100 gal) or a methylated seed oil (1-2 gal/100 gal) instead of a surfactant. For all applications, also add 28% liquid nitrogen (2.5 gal/100 gal) or ammonium sulfate (12-15 lb/100 gal) to the spray solution.

Maximum alfalfa height that can be treated (inches): 3
Pest Timing: PRE, POST. Apply in the spring or fall to annual weeds that are not yet emerged or are 1-3 inches in height or diameter.

Remarks: Effective in suppressing annual weeds, but not perennial weeds in pure alfalfa stands. Good herbicide coverage is essential for adequate weed control; weeds treated after a recent harvest may be inadequately controlled. Several weed species are resistant to imidazolinone herbicides such as Pursuit. If applications appear to have not worked, please consult your local county Extension agent for assistance in determining if you have a resistant population in your field.

Roundup PowerMAX

Active Ingredient(s): glyphosate
Rate: 22-42 fl oz/a
Adjuvants: AMS. AMS at 8.5-17 lb/100 gallons of spray mixture is recommended if using hard water. Additional surfactant is rarely needed.

Maximum alfalfa height that can be treated (inches): any
Pest Timing: POST. For perennial weeds, fall applications will give the best results. Quackgrass can be controlled with either spring or fall applications. Apply to annual weeds when they are 4-6 inches tall.

Remarks: Provides good to excellent control of most grass and broadleaf weeds found in established alfalfa fields in Wisconsin. Fall applications are recommended to control winter annual or perennial weeds. For removal of Roundup Ready alfalfa use at least 1.0 lb ae/a of either 2,4-D or dicamba or a combination of both in the fall prior to a hard frost. Also scout and plan for management of volunteer plants in the crop the following year, especially in no-till fields.

Select 2EC

Active Ingredient(s): clethodim
Rate: 10-16 fl oz/a
Adjuvants: NIS, COC, MSO, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions dry, consider using a crop oil concentrate or methylated seed oil at 0.25% vol/vol. If difficult-to-control grass species are present, consider adding 2.5-4.0 lb/a of ammonium sulfate to improve control.

Maximum alfalfa height that can be treated (inches): any
Pest Timing: POST.

Remarks: Effective at suppressing perennial grasses when applied before first cutting or used in the summer to control annual grasses that appear following the second or third cutting. Forage grasses, if present will be stubbled or killed. Control will be reduced if grassy weeds are under stress, especially from drought, or if they have been previously mowed.

Select Max

Active Ingredient(s): clethodim
Rate: 12-32 fl oz/a
Adjuvants: NIS, COC, MSO, AMS. In most situations the addition of a nonionic surfactant to the spray solution (1 qt/100 gal) is recommended. If weeds are large and growing conditions dry, consider using a crop oil concentrate or methylated seed oil at 0.25% vol/vol. If difficult-to-control grass species are present, consider adding 2.5-4.0 lb/a of ammonium sulfate to improve control.

Maximum alfalfa height that can be treated (inches): any
Pest Timing: POST. Treat when annual grasses are 2-6 inches tall and when perennials are 4-8 inches tall.

Remarks: Effective at suppressing perennial grasses when applied before first cutting or used in the summer to control annual grasses that appear following the second or third cutting. Forage grasses, if present will be stubbled or killed. Control will be reduced if grassy weeds are under stress, especially from drought, or if they have been previously mowed.

Velpar 75DF

Active Ingredient(s): hexazinone
Rate: 0.67-2.0 lb/a
Adjuvants: none.

Maximum alfalfa height that can be treated (inches): 2
Pest Timing: PRE, POST. Treat before weeds have emerged for the best results.

Remarks: Effective at suppressing perennial weeds in established alfalfa. Use no more than 1 lb/a of Velpar in stands less than 12 months old. Use lower rates (0.67-1.0 lb/a) on coarse to medium soils and higher rates (1-2 lb/a) on medium to heavy soils with 1-5% organic matter. Do not treat stressed stands or alfalfa-grass mixtures. Do not use in sandy soils, poorly drained soils, or exposed subsoil areas. Velpar may be mixed with dry bulk fertilizer for simultaneous application. Use at least 20 gal/a of spray solution to apply.

Weed and brush control in grass pastures

Proper fertilization, grazing, and weed management all play an important role in good pasture management. Low soil fertility or excessive grazing allows weeds to invade. Several weed management options exist in pastures, although initially producers should ensure pasture management is being conducted properly.

Most producers rely on mowing, grazing, or herbicides. Mowing and grazing can be effective management strategies at preventing further spread of perennial weeds and reducing populations of annual and biennial weeds. Success is dependent on mowing at the correct stage of development to maximize injury to the weed species and promote forage growth. Timings for mowing and grazing are species-specific, but typically plants should be mowed just as the flowers begin to open. Annuals and biennial weeds usually don’t die, but they don’t regrow.
Table 4-3a. Legume tolerance and herbicide effectiveness on weeds commonly found in established legume stands

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Mode of action group</th>
<th>Weed timing</th>
<th>Labeled crops</th>
<th>Crop tolerance</th>
<th>Common chickweed</th>
<th>Field pennycress</th>
<th>Foxtail species</th>
<th>Shepherd's purse</th>
<th>Broadleaf plantain</th>
<th>Canada thistle</th>
<th>Comon Dandilion</th>
<th>Curly dock</th>
<th>Hemp dogbane</th>
<th>Hoary alyssum</th>
<th>Perennial sowthistle</th>
<th>Quackgrass</th>
<th>White cockle</th>
<th>Wiestem musly</th>
<th>Yellow nutsedge</th>
<th>Yellow rocket</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyrrac 200</td>
<td>4</td>
<td>POST</td>
<td>al</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Chateau</td>
<td>14</td>
<td>PRE</td>
<td>al</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Extreme</td>
<td>2, 9</td>
<td>POST</td>
<td>al</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>5</td>
<td>PRE or POST</td>
<td>al</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>1</td>
<td>POST</td>
<td>al, bf</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>3</td>
<td>PRE</td>
<td>al</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pursuit</td>
<td>2</td>
<td>PRE or POST</td>
<td>al, bf</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Raptor</td>
<td>2</td>
<td>PRE or POST</td>
<td>al, cl</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>—</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>9</td>
<td>POST</td>
<td>al, bf, cl</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>Select 2EC</td>
<td>1</td>
<td>POST</td>
<td>al, bf</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Select Max</td>
<td>1</td>
<td>POST</td>
<td>al, bf</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Velpar 75DF</td>
<td>5</td>
<td>PRE</td>
<td>al</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>Velpar 2L</td>
<td>5</td>
<td>PRE</td>
<td>al</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>x</td>
</tr>
</tbody>
</table>

Abbreviations: al = alfalfa; bf = birdsfoot trefoil; cl = clover
Efficacy ratings: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control; — = no information
Crop tolerance ratings: 10 = excellent; 8 = good; 6 = fair
a Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.
b Labeled for use only when these species are used as a cover crop.
c If column is marked with an x, see Table 4-3b for caution statement.

Table 4-3b. Cautionary statements for herbicides of commonly found weeds in established legume stands

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Caution statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme</td>
<td>If broadcasted, use only on Roundup Ready alfalfa varieties.</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Do not apply on sandy soils with a pH>7.5.</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>If broadcasted, use only on Roundup Ready alfalfa varieties.</td>
</tr>
<tr>
<td>Velpar 75DF</td>
<td>Do not use in sandy soils, poorly drained soils, or exposed subsoil areas.</td>
</tr>
<tr>
<td>Velpar 2L</td>
<td>Do not use in sandy soils, poorly drained soils, or exposed subsoil areas.</td>
</tr>
</tbody>
</table>
enough to produce viable seed. If this practice can be repeated for 3-5 years at the correct stage of development, weed populations can be dramatically reduced. Perennial plants have enough energy to regrow and produce viable seed and often need to be mowed multiple times to prevent seed production. Similar results can be obtained with grazing, but the palatability of weeds, especially at the appropriate stage of development, may reduce feeding and result in reduced control.

While mowing and grazing are effective management strategies, herbicides are usually more effective and less expensive. In addition, several herbicides or herbicide combinations can be used to control unwanted brush in pastures. Which herbicide to use will depend upon the susceptibility of the most prevalent weeds in the pasture (see table 4-4). Recommended rates of herbicides typically do not damage forage grasses, but will injure or kill existing forage legumes, such as clovers and birdsfoot trefoil. If these legumes are desirable, avoid using herbicides or spot treat to minimize herbicide contact with these plants.

Herbicides labeled for pastures are not harmful to livestock when properly applied. However, treatment of poisonous weeds may make these species more palatable to grazing livestock or cause accumulation of toxic substances in poisonous weeds. As a general recommendation, do not graze treated pastures for 2 weeks after application. Otherwise, follow the grazing restrictions as described on the herbicide label. We also suggest a 2-week interval without grazing before applying herbicides to pastures. This will help ensure that the weeds are not stressed from grazing and trampling when treated.

For details about the effectiveness of herbicides registered for use on invasive weeds growing in CRP fields, refer to table 8-3 in the Appendix.

2,4-D for herbaceous weed control

Rate: Apply 2 pt/a of 2,4-D amine or ester (forms containing 3.8 lb ae/gal) to control annual broadleaf weeds, 2-4 pt/a to control biennials and perennial broadleaves.

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Treat annual broadleaves when they are seedlings; biennials like bull, musk, and plumeless thistles in the rosette stage; and actively growing perennial broadleaf weeds in the bud stage.

Remarks: Repeated application of 2,4-D amine or ester for 2 or 3 years will effectively control most nonwoody broadleaf weed populations in grass pastures. Either fall or spring applications control biennial thistles in the rosette stage if they are actively growing when sprayed. After the biennials have formed a flower stalk, they are more tolerant to these herbicides. Several years of treatment may be necessary to satisfactorily control hard-to-kill perennial weeds. The 2,4-D amines are water-soluble liquids and 2,4-D esters are emulsifiable concentrates. Both formulations are sold under various trade names and at various concentrations of ae/gal. Ester formulations have greater potential to volatilize and drift than amine formulations. Read the label carefully to avoid application during conditions that will promote vapor drift. Formulations of 2,4-D ester are also available in low-volatile forms that reduce the potential for vapor drift.

Most labels state that pastures treated with 2,4-D should not be grazed by dairy cattle for 7 days after application and that meat animals must be removed from treated areas 3 days before slaughter unless more than 2 weeks have elapsed since treatment. Do not cut treated grass for hay within 30 days after application. Read the label carefully for specific rates, grazing restrictions, and application precautions.

2,4-D for brush control

Rate: Varies with brush species and method of application. See label for details.

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Apply 2,4-D in late spring or early summer when brush is in full leaf and actively growing.

Remarks: With foliar sprays, wet foliage to the point of runoff. 2,4-D alone is not effective on all brush species. Some retreatment is usually required for complete kill. Cut brush that is more than 6-8 ft tall and treat the cut surface or regrowth the following year. This product will

Banvel/Clarity

See dicamba.

Chaparral

Active ingredient(s): aminopyralid + metsulfuron

Rate: 1.0-2.0 oz/a for annual and biennial weeds and 2.5-3.3 oz/a for difficult-to-control perennials and brush species. Consult the label for rates for specific weed species.

Adjuvants: Add either a nonionic surfactant at 0.25-0.50% vol/vol, a crop oil concentrate at 1-2% vol/vol, or a methylated seed oil at 0.50% vol/vol.

Timing: POST. Although Chaparral is effective when applied across a range of plant stages, best results are observed if annual weeds are treated when they are small, biennial weeds as rosettes, and perennials at the flower bud to flowering stages. If perennial plants are mowed in the summer, resprouting plants can be treated in the fall as long as leaves are green. Brush can be treated from the spring through the fall as long as it has leaves present that are green and growing.

Remarks: The combination of aminopyralid and metsulfuron make this a very active herbicide on nearly all broadleaf weeds and brush species found in Wisconsin pastures. This herbicide is active on legumes and can suppress any growing legume for one or more years. Soil activity of both aminopyralid and metsulfuron can last for months to years depending on the rate applied and environmental conditions. Research in Wisconsin has shown successful establishment of legumes one year after application, but the label recommends conducting a soil bioassay before planting. Since this product contains aminopyralid, users must ensure that manure created from animals that feed on treated hay is not put onto a field that will be planted to any broadleaf crop (see label for more information). Animals should be fed aminopyralid-free forage for at least 3 days before they are transferred to a field with sensitive plants (such as clovers). Treated areas can be harvested or grazed any time after application, but it is recommended to wait 14 days after treatment. If treated pastures are hayed, forage cannot be sold
for 18 months after treatment but must be used on-farm.

Curtail

Active ingredient(s): clopyralid + 2,4-D

Rate: Use lower rates on annual and biennial weeds and higher rates on Canada thistle. **Adjuvants:** Use 0.25-0.50% (vol/vol) of spray solution with a nonionic surfactant. Adjuvants are not normally needed with Curtail.

Timing: Treat biennial weeds when they are in the rosette growth stage. Treat perennials when the basal leaves are fully developed and up to the rosette stage. Treat perennials when they are in the rosette to bud growth stages if they have come out and other weeds are up, but before plants reach the bud stage.

Remarks: Curtail contains 0.38 lb ae of clopyralid and 2.0 lb ae of 2,4-D per gallon. Both active ingredients are formulated as amines. Thus, there is lower risk of vapor drift with Curtail. When applied at 4 to 6 pt/a, Curtail gives the same amount of clopyralid as 8-12 fl oz of Stinger and the same amount of 2,4-D as 1.0-1.5 qt of 2,4-D (products with 3.8 lb ae/gal).

The primary use of Curtail in pastures will be to control thistles and spotted knapweed. Curtail is not an effective brush herbicide. The label recommends the 4 pt/a rate for light to moderate Canada thistle and knapweed infestations when plants are actively growing and 6 pt/a for dense infestations or when dry weather or other stresses have reduced the growth of Canada thistles. For biennial thistles, use 2 pt/a when plants are in the rosette stage and 3 pt/a if bolting has occurred but before plants reach the bud stage. For best results, treat when weeds are actively growing. Drought, heat, and cold stress may reduce weed control and increase crop injury. The grazing restriction for lactating dairy cattle is 14 days. Animals must be removed from treated pastures before being slaughtered unless it is established for at least 4 weeks has passed since treatment. If animals are to be moved into areas with sensitive broadleaf plants, feed animals untreated forage for at least 7 days before moving them. While there is no grazing restriction for other livestock, we suggest a 14-day interval for all animals. Grass hay cannot be harvested for 14 days after application. Curtail is rainfast within 6 hours after application.

Dicamba

Rate: Apply 0.5-1.0 pt/a Banvel or Clarity to control weeds such as wild buckwheat, chickweed, chicory, curly dock, common ragweed, giant ragweed, redroot pigweed, shepherd’s purse, and velvetleaf. The 1 pt/a rate burns down the top growth of field bindweed, Canada thistle, perennial sowthistle, and leafy spurge. Rates of 1 qt/a will control weeds such as wild carrot, goldenrod, knapweed, and yarrow. Broadcast applications cannot exceed 1 qt/a.

Adjuvants: Include a nonionic surfactant at 0.25-0.50% (vol/vol) of spray solution can provide additional control, particularly for difficult-to-control weeds.

Timing: Treat dicamba to young, actively growing weeds before they blossom. If perennials regrow, treat as needed. In newly seeded grass pastures, do not apply dicamba until the grasses have three to five leaves.

Remarks: Dicamba controls many hard-to-kill broadleaf weeds and several brush species. Follow label directions and adjust application rates according to the weeds that need to be controlled. High rates of dicamba may cause temporary injury to sensitive pasture grasses. Avoid drift of dicamba onto desirable plants or crop injury will occur. Soybeans, tobacco, vegetable crops, and many ornamentals are particularly sensitive to dicamba. Pastures treated with up to 1 pt/a of dicamba should not be grazed by dairy animals for 7 days or harvested for hay for 37 days after treatment. Pastures treated with up to 1 qt/a should not be grazed by dairy animals for 21 days or harvested for hay for 51 days after treatment. Pastures treated with 1-2 qt/a of dicamba should not be grazed by dairy animals for 40 days or harvested for hay for 70 days after treatment. There is no waiting period between treatment and grazing for non-lactating animals, but a 14-day period is suggested. Meat animals should not graze in treated pastures 30 days before slaughter.

Escort

Active ingredient(s): metsulfuron

Rate: Rates vary between 0.1 and 1.0 oz/a depending upon targeted weed species. Apply 0.3 oz/a as a broadcast treatment to control multilinora rose. Rates of 0.1-0.2 oz/a control wild carrot, musk thistle, buttercup, and curly dock. For spot treatments, mix 1 oz of product/100 gal of water (plus surfactant) and wet foliage to the point just before runoff. Higher rates (0.5-1.0 oz/a) are recommended to control difficult weed species. (Please consult the label.)

Adjuvants: Add a nonionic surfactant at 0.5-1.0 qt/100 gal of spray solution.

Timing: Treat multiflora rose soon after the bushes are fully leafed out and other weeds when they are in the rosette to bud growth stages and actively growing, or in the fall to resprouting green tissue.

Remarks: Escort controls blackberries, bull and plumleaf thistles, burdock, chickweed, dandelion, horseradish, mullein, multiflora rose, plantain, wild parsnip, and yarrow. Thorough coverage of leaves and stems assures best results, but avoid over-application or grass injury will occur. Symptoms in treated weeds begin to appear 2-3 weeks after application. If desired, this product can be tank mixed with 2,4-D, Banvel, or Weedmaster. Apply Escort in 10 gal/a or more of water within 24 hours of preparation or product degradation may occur. Do not use more than 40 psi when applying and do not use hollow cone nozzles. Make only one application per year. Follow all label directions to avoid spray drift and for sprayer cleanup after application.

There is no grazing restriction following application, even for lactating dairy animals. Nevertheless, a 14-day removal period is suggested. Smooth brome, bluegrass, orchardgrass, and timothy are tolerant of Escort if they have been established for 6 months or more. Fescue should be established for at least 24 months before application, and seedhead suppression may occur if applied in spring. Do not use these products in...
pastures containing meadow fescue or perennial ryegrass. Forage legumes are sensitive to met-sulfuron and are usually killed in treated areas; therefore, avoid broadcasting treatments if these legumes are desired.

GrasonNext HL
(Formerly ForeFront HL)

Active ingredient(s): aminopyralid + 2,4-D
Rate: 19-34 fl oz/a. If spot treating, up to 67 fl oz/a may be applied if no more than half the acre is sprayed.

Adjuvants: A nonionic surfactant is recommended at 0.25-0.5% (vol/vol).

Timing: POST. Best results are observed if annual weeds are treated when they are small, biennial weeds as rosettes, and perennials at the flower bud to flowering stages. If perennial plants are mowed in the summer, resprouting plants can be treated in the fall as long as leaves are green.

Remarks: This herbicide is particularly active on plants in the sunflower (thistles, knapweeds) and bean (legumes) families, but many broadleaf plants are tolerant, and established grasses are very tolerant. This herbicide will suppress legumes for over a year. Soil activity lasts for several months and if applied in the fall, can persist into the next year. Research in Wisconsin has shown successful establishment of legumes one year after application, but the label recommends conducting a soil bioassay before planting. Users must ensure that manure created from animals that feed on treated hay is not put onto a field that will be planted to any broadleaf crop (see Table 4-4. Herbicide effectiveness on weeds commonly found in pastures).

Table 4-4. Herbicide effectiveness on weeds commonly found in pastures

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Burdock</th>
<th>Carrot, wild</th>
<th>Dandelion, white</th>
<th>Goldenrod, showy</th>
<th>Horsenettle</th>
<th>Hybrid ragweed</th>
<th>Indian burnet</th>
<th>Ironweed, purple</th>
<th>Knapweed, spotted</th>
<th>Milkweed, common</th>
<th>Nettle, stinging</th>
<th>Rose multiflora</th>
<th>Sorghum, perennial</th>
<th>Thistle, Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Chaparral</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Crossbow</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Curtail</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Diicamba</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Escort</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>GrazonNext HL</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PastureGard HL</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Remedy Ultra</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Weedmaster</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

* This summary table is based on observations in Wisconsin and other North Central states.
label for more information). Animals should be fed aminopyralid-free forage for 3 days before they are transferred to a field with sensitive plants (e.g., clovers). Treated areas should not be harvested for 14 days after application. If treated pastures are hayed, forage cannot be sold for 18 months after treatment but must be used on-farm.

Overdrive
Active ingredient(s): dicamba + diflufenzopyr
Rate: 4-8 oz/a.
Adjuvants: Use a nonionic surfactant at 1 qt/100 gal of spray solution (0.125%, vol/vol) or methylated seed oil at 1.5-2 pt/a.
Remarks: The product contains diflufenzopyr and dicamba. The Overdrive label lists many weeds common in pastures and noncrop areas, including biennial thistles, bindweeds, burdock, buttercups, Canada thistle, curly dock, goldenrod, horseradish, spotted knapweed, white cockle, wild carrot, and wild parsnip. The recommended rates of Overdrive in pastures are 4-8 oz/a. Annual broadleaf weeds and biennials in the rosette stage will be controlled at lower rates than perennials. Overdrive must be applied with a nonionic surfactant or methylated seed oil (MSO). Consider using MSO when treating hard-to-kill weeds or when plants are under moisture or temperature stress. This product has no harvesting or grazing restrictions.

PastureGard HL
Active ingredient(s): triclopyr + fluroxypyr
Rate: 0.75-4 pt/a. Higher rates for brush, and lower rates (0.75-1.5 pt/a) for herbaceous plants. If spot treating, use a 0.5-1.0% v/v solution.
Adjuvants: A nonionic surfactant is recommended at 0.5-1.0% v/v.
Timing: POST. Best results are observed if annual weeds are treated when they are small, biennial weeds as rosettes, and perennials at the flower bud to flowering stages. If perennial plants are moved in the summer, resprouting plants can be treated in the fall as long as leaves are green.
Remarks: Triclopyr in combination with fluroxypyr provides control of troublesome brush species and weed species other products struggle to control (milkwheels). Applications to brush should be made when plants are actively growing in the spring to summer. Herbaceous plants should be treated when they are small, before flowering unless the label states otherwise. While established grasses are tolerant to this product, legumes are not. If interested in reseeding after application wait three weeks for grasses and one month for legumes. Treated areas should not be harvest-ed for 14 days after application. There are no restrictions on grazing animals on treated areas. Withdraw livestock from treated areas or stop feeding treated forage 3 days before slaughter if treated in the same growing season.

Remedy Ultra
Active ingredient(s): triclopyr
Rate: For most brush species use 0.25-0.5% (vol/vol) mixture for foliar applications. The broadcast rate varies from 1-2 pts/a for annuals/biennials to 1-2 qt/a for perennial broadleaf weeds. Apply no more than 2 quarts per acre per growing season.
Timing: POST. Plants must be fully leafed out and actively growing when treated with foliar applications. Remedy can also be applied as a cut stump or basal bark treatment.
Remarks: Remedy contains triclopyr which is generally effective on woody plants and a range of herbaceous species including alder, ash, burdock, wild carrot, cherry, goldenrod, multiflora rose, sumac, and willow. It can be applied with conventional boom sprayers as a broadcast treatment, as a foliar spray to individual brush plants, or as a cut stump or basal bark treatment. While Remedy is formulated to have low volatility, applications should be avoided when temperatures are over 90°F and humidity is low. Follow label precautions to prevent spray or vapor drift to sensitive vegetation.
While no grazing restrictions exist for livestock including lactating animals on treated areas, we recommend a 14-day removal period to maximize effectiveness prior to grazing. Do not harvest hay for 14 days after treatment. If livestock will be slaughtered in the year of treatment, remove the animals from these pastures at least 3 days before Remedy is used.

Roundup PowerMAX
Active ingredient(s): glyphosate
Rate: Varies with species and method of application. See label for details.
Adjuvants: Ammonium sulfate at 8.5-17 lb/100 gal of spray mixture is recommended if using hard water. Additional surfactant is rarely needed.
Timing: POST. Treat perennial broadleaves in the late-bud to early-flower stage or treat regrowth following mowing or grazing in the fall. Treat brush species when leaves are fully expanded and plants are actively growing. Biennial and annual weeds can be treated any time, but best results are seen when they are small.
Remarks: Glyphosate is available in various brand names. Not all products are labeled for use in pastures; check the label before using. Products may also vary in glyphosate concentration, type and amount of surfactants, and approved use rates. Spot application of glyphosate in pastures is appropriate for treating localized weed problems such as Canada thistle or multiflora rose, which often occur in patches. No more than 10% of any acre should be spot-treated at one time. Additional applications can be made in the same pasture at 30-day intervals. Glyphosate is nonselective and will kill all treated vegetation; reseed the area with a desirable mixture of forage species. Foliar sprays of glyphosate control these brush species: alder, elms, honeysuckle, multiflora rose, oaks, poison ivy, sumac, and willow. Symptoms of injury may not appear for several weeks. Glyphosate can also be used in pastures in wiper applicators. An 8- to 12-inch height difference between the weeds and pasture species is required. This approach is useful to suppress tall herbaceous broadleaf weeds such as chicory, goldenrod, giant ragweed, bull thistle, and plumewless thistle in pastures with birdfoot trefoil or clover. For best results, remove domestic livestock before treating and do not graze or harvest for 14 days after treatment.

Spike
Active ingredient(s): tebuthiuron
Rate: 0.75 oz of Spike pellets in 100 sq ft (equivalent to 20 lb/a).
Timing: Any time except when the soil is frozen or saturated with moisture.
Remarks: Spike is a persistent, nonselective herbicide registered for brush control in pastures and non-cropland areas. The Spike 20P formulation is the only formulation clearly registered for use in pastures. Spike 20P is a pelleted formulation with 20% active ingredient. Spread pellets evenly over the area under the target plant. This approach gives excellent control of multiflora rose when 0.25 oz of Spike pellets are distributed around three to six bushes. All vegetation in the treated area will be suppressed for one to two years. Treated brush will die over a period of several weeks to months. Use great care to avoid injury to nearby sensitive vegetation and to prevent movement into surface or groundwater. Do not apply Spike to areas where soils are sandy to loamy sand and/or the water table is less than or equal to 5 ft deep. Susceptible brush species include black locust, boxelder, maple, mulberry, multiflora rose, oak, willow, and many more. There is no grazing restriction following application, but hay cannot be harvested from treated pastures for 12 months.
Stinger

Active ingredient(s): clopyralid
Rate: Apply 0.5–1.33 pt/a
Adjuvants: Surfactants and other additives are not normally added to the spray mixture.
Timing: POST. Best results are observed if annual weeds are treated when they are small, biennial weeds as rosettes, and perennials at the flower bud to flowering stages. If perennial plants are mowed in the summer, resprouting plants can be treated in the fall as long as leaves are green.
Remarks: Stinger is particularly active on plants in the sunflower family such as thistles and knapweeds. A single application of Stinger may not eradicate Canada thistle, but it often reduces the infestation for several years. Stinger can be tank mixed with 2,4-D or dicamba for a more economical treatment. Stinger will injure or even kill treated forage legumes such as trefoil and clovers.
While there is no grazing restriction for pastures, we recommend following a 14-day restriction for pastures. Do not move livestock from treated areas onto sensitive broadleaf crop areas until they have grazed for 7 days on an untreated pasture. Otherwise urine and manure may contain sufficient Stinger to injure sensitive broadleaf crops. Users cannot spread manure created from animals fed treated hay onto any field that will be planted to a broadleaf crop. Stinger cannot be used in fields infested with broadleaf weeds, use 2,4-D or dicamba in the fall before spring renovation. Allow at least 42 days between treatment and first grazing.

Pasture renovation

No-till pasture renovation with herbicides is attracting interest in several areas of Wisconsin. It is best suited to fields on hillsides where tilling the soil may allow excessive erosion to occur. Success depends on timely rains to stimulate the germination of the forage seeds. The following herbicides aid in no-till pasture renovation. Be sure broadleaf weeds have been controlled before interseeding legumes into pastures. After the legume is established, there are no selective herbicides available for broadleaf weed control. Where biennial thistles are present, treat for at least 2 years before renovation to reduce their abundance.

See table 4-5 for a summary of harvest and grazing intervals following herbicide use in pastures.

Weedmaster

Active ingredient(s): dicamba + 2,4-D
Rate: 1-2 pt/a for annual, biennial, and perennial weeds and 2 qt/a for difficult-to-control perennials and bush species.
Adjuvants: The label recommends the addition of nonionic surfactant (0.25-0.5% vol/vol) or a crop oil concentrate (0.25% vol/vol).
Timing: POST. Best results are observed if annual weeds are treated when they are small, biennial weeds as rosettes, and perennials at the flower bud to flowering stages. If perennial plants are mowed in the summer, resprouting plants can be treated in the fall as long as leaves are green.
Remarks: Weedmaster is a prepackaged formulation of dicamba + 2,4-D for use in pastures. Apply 1 pt/a of Weedmaster to control buttercup, lambsquarters, pigweed, and smartweed. Use 2 pt/a to control burdock, chicory, curly dock, dandelions, goldenrod, mustards, bull thistle, musk thistle, and plumeless thistle. Apply 2 qt/a to control elderberry, honeysuckle, nettle, nightshade, poison ivy, and tansy ragwort and to suppress field bindweed, Canada thistle, perennial sowthistle, and leafy spurge. Use appropriate precautions to avoid drift to nearby sensitive vegetation. This product will injure or even kill forage legumes such as clover and trefoil. Wait 3 weeks/qt/a before reseeding pasture species or injury may occur. No grazing restrictions exist for nonlactating animals, but lactating dairy cattle cannot graze treated fields for 7 days after treatment or meat animals within 30 days of slaughter. Treated grass may be harvested for hay 37 days after application.

Gramoxone SL

Active ingredient(s): paraquat
Rate: Apply 1-2 pt/a. Use the high rate to suppress smooth brome and orchardgrass. Increase both the Gramoxone rate and the volume of water as the density and size of vegetation to be treated increases.
Adjuvants: Add nonionic surfactant at 1-2 pt/100 gal of spray solution.
Timing: PRE. Apply preplant or at the time of seeding in spring or early summer.
Remarks: Gramoxone suppresses the competition of existing sod and emerged broadleaf weeds and grasses to facilitate seeding grasses and/or forage legumes such as alfalfa, clovers, and birdsfoot trefoil into existing pastures without tillage. Apply in at least 20 gal/a of water and treat only closely grazed or mowed pastures that are no more than 2-3 inches tall at the time of spraying. The burn-down action of Gramoxone facilitates the no-till seeding (pasture seeding) of more desirable forage legumes and grasses. No-till seeding with Gramoxone is more successful in bluegrass pastures than in pastures containing large amounts of quackgrass. Quackgrass recovers more rapidly after treatment than bluegrass and may compete vigorously with legume seedlings. Gramoxone will not kill perennial weeds such as dandelions. In fields infested with broadleaf weeds, use 2,4-D or dicamba in the fall before spring renovation. Allow at least 42 days between treatment and first grazing.
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Use(s)</th>
<th>Type of animal</th>
<th>Interval between application and grazing or harvest</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>pastures</td>
<td>lactating</td>
<td>7 days: 3–7 days</td>
<td>2,4-D labels vary. See specific product label. Do not harvest grass for hay within 30 days of use.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buctril</td>
<td>alfalfa</td>
<td>all</td>
<td>30 days</td>
<td>Do not harvest fall–treated alfalfa until 60 days following application.</td>
</tr>
<tr>
<td>Butyrac 200</td>
<td>alfalfa, trefoil</td>
<td>all</td>
<td>60 days: new seedings 30 days: established stands</td>
<td></td>
</tr>
<tr>
<td>Chaparral</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>Before transferring animals from treated areas to areas planted with sensitive broadleaf crops, graze them for 3 days on untreated forage.</td>
</tr>
<tr>
<td>Chateau</td>
<td>alfalfa</td>
<td>all</td>
<td>25 days</td>
<td></td>
</tr>
<tr>
<td>Crossbow</td>
<td>pastures</td>
<td>lactating</td>
<td>next season: grazed 14 days: harvested 0 days</td>
<td>Remove livestock from treated areas at least 3 days before slaughter during year of treatment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtail</td>
<td>pastures</td>
<td>lactating</td>
<td>14 days: 0 days</td>
<td>Do not harvest hay for 7 days after application. Remove meat animals 7 days before slaughter unless 2 weeks have elapsed since application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>pastures</td>
<td>lactating</td>
<td>7 days: <1 pt/a 21 days: 1–2 pt/a 40 days: 2–4 pt/a</td>
<td>Remove meat animals from treated areas 30 days before slaughter; 30–70 days must elapse if hay is to be harvested and fed to dairy animals. See label for restrictions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other</td>
<td>0 days</td>
<td></td>
</tr>
<tr>
<td>Eptam</td>
<td>alfalfa, clovers, trefoil</td>
<td>all</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>Escort</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>No grazing restrictions.</td>
</tr>
<tr>
<td>Extreme</td>
<td>alfalfa</td>
<td>all</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>GrazonNext HL</td>
<td>pastures</td>
<td>all</td>
<td>7 days: harvested 0 days: grazed</td>
<td>Before transferring animals from treated areas to areas planted with sensitive broadleaf crops, feed animals for 3 days on untreated forage.</td>
</tr>
<tr>
<td>(ForeFront HL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>pasture renovation</td>
<td>all</td>
<td>0–60 days</td>
<td>Only apply to pastures ≤3 inches tall. Consult the label for specific grazing restrictions.</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>alfalfa</td>
<td>all</td>
<td>28 days</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>Before transferring animals from treated areas to areas planted with sensitive broadleaf crops, feed animals for 3 days on untreated forage.</td>
</tr>
<tr>
<td>Overdrive</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>No grazing restrictions.</td>
</tr>
<tr>
<td>PastureGard HL</td>
<td>pastures</td>
<td>all</td>
<td>0 days: grazed 14 days: harvested</td>
<td>Remove livestock from treated areas at least 3 days before slaughter during year of treatment.</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>alfalfa, clovers, trefoil</td>
<td>all</td>
<td>7 days: undried forage 14 days: dry hay 20 days: dried clover</td>
<td>Grazing restrictions same as undried forage.</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>alfalfa</td>
<td>all</td>
<td>28 days ≤ 2.1 qt/a 50 days > 2.1 qt/a</td>
<td></td>
</tr>
<tr>
<td>Pursuit</td>
<td>alfalfa, clover</td>
<td>all</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Raptor</td>
<td>alfalfa</td>
<td>all</td>
<td>0 days</td>
<td></td>
</tr>
<tr>
<td>Remedy Ultra</td>
<td>pasture</td>
<td>all</td>
<td>0 days</td>
<td>Remove livestock from treated areas at least 3 days before slaughter during year of treatment.</td>
</tr>
</tbody>
</table>

a Labels may have changed after this table was prepared. Consult current labels to verify the information.
Table 4-5. Harvest and/or grazing restrictions for herbicides registered for use in forages and pastures

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Use(s)</th>
<th>Type of animal</th>
<th>Interval between application and grazing or harvest</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundup</td>
<td>spot treatment or selective</td>
<td>all</td>
<td>0 days: <2 q/a</td>
<td>If more than 2 qt/a is applied with spot treatments, do not treat more than 10% of any acre.</td>
</tr>
<tr>
<td>PowerMAX</td>
<td>equipment in forage grasses</td>
<td></td>
<td>7 days: >2 qt/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and legumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pasture renovation</td>
<td>all</td>
<td>0 days: <2 qt/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 weeks: >2 qt/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>alfalfa, preharvest</td>
<td>all</td>
<td>36 hours</td>
<td>Only for fields being rotated to another crop.</td>
</tr>
<tr>
<td>Select Max</td>
<td>alfalfa, trefoil</td>
<td>all</td>
<td>15 days</td>
<td></td>
</tr>
<tr>
<td>Spike</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>No grazing restrictions on the label; do not harvest hay from treated pastures for 12 months.</td>
</tr>
<tr>
<td>Stinger</td>
<td>pastures</td>
<td>all</td>
<td>0 days</td>
<td>No grazing restrictions on the label. Do not use hay or straw for bedding, composting, or mulch on broadleaf crops.</td>
</tr>
<tr>
<td>Treflan</td>
<td>alfalfa</td>
<td>all</td>
<td>21 days</td>
<td></td>
</tr>
<tr>
<td>Velpar</td>
<td>alfalfa</td>
<td>all</td>
<td>30 days</td>
<td></td>
</tr>
<tr>
<td>Weedmaster</td>
<td>pastures</td>
<td>lactating</td>
<td>7 days</td>
<td>Allow 37 days between application and hay harvest. Remove meat animals from treated areas 30 days before slaughter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other</td>
<td>0 days</td>
<td></td>
</tr>
</tbody>
</table>

Labels may have changed after this table was prepared. Consult current labels to verify the information.
Insecticides suggested in this section are intended as a guide to assist you in selecting chemical insect control options during the season. This book provides an overview of product registrations for specific field crop insect pests; it is not intended as an exhaustive insecticide label source. Product inclusion or omission does not imply endorsement by University of Wisconsin-Extension. Remember, certain insecticides are produced by different manufacturers and directions for use, rate, and method of application may vary by formulation. Therefore, always read the insecticide label completely before using the material.

Insecticides are often interchangeably referred to by their common and trade names. Trade names such as Mustang Maxx are capitalized, while common chemical names—zeta-cypermethrin in this example—are not.

A number of the products listed in this section are restricted-use insecticides. We discuss restricted-use pesticides in the beginning of this publication. Refer to appendix table 8-2 for a list of insecticides that currently require certification to be applied. It is possible that additional insecticides will be classified before the next growing season. Contact your county Extension agent for additional information on insecticide restriction. Refer to table 4-6 for a scouting calendar for forage insect pests by forage growth stage.

Reducing insecticide hazards to bees

Insecticides help control insect pests, but they also can kill beneficial insects such as honeybees. Notifying beekeepers before using insecticides and apply only between 4 p.m. and nightfall, when bees are least likely to be actively foraging will reduce non target effects. Avoid spraying alfalfa or clover when in blossom. Some insecticides state that applications should not be made during bloom. Failure to heed this warning is a use inconsistent with the label and therefore, a violation of the law.

If insects are damaging blooming alfalfa, harvest the alfalfa and, if necessary, spray the new growth to control the insects. However, before spraying regrowth, check for the presence of blossoming plants. During some years, heavy populations of blossoming white clover appear in alfalfa stubble shortly after harvest of the first crop. Bees foraging on these blossoms will be killed if regrowth is sprayed. Always try to select an effective insecticide that is the least toxic to bees.

Avoid spraying ditch banks, fence rows, and roadsides when plants are in bloom.

Advance notification: Wisconsin beekeepers may request a 24 hour advance notice of applications of certain pesticides made within a 1.5-mile radius of their beeyards. The insecticides involved are those which are labeled “Highly Toxic to Bees”. Beekeepers desiring advance notification must provide their request in writing to the landowner or person controlling the use of the land on which pesticides may be applied either by ground or aerially. All requests expire at the end of each calendar year.

Table 4-6. Periods to scout for insect pests of forages

<table>
<thead>
<tr>
<th>Insect pest</th>
<th>Spring growth</th>
<th>Second growth</th>
<th>Third growth</th>
<th>New seeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa blotch leafminer</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Alfalfa caterpillar</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Alfalfa weevil</td>
<td>yes (new growth only)</td>
<td>no</td>
<td>seldom</td>
<td></td>
</tr>
<tr>
<td>Aphids</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Blister beetles<sup>1</sup></td>
<td>no</td>
<td>yes<sup>3</sup></td>
<td>yes<sup>5</sup></td>
<td>yes<sup>5</sup></td>
</tr>
<tr>
<td>Cutworms</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Grasshoppers</td>
<td>seldom</td>
<td>seldom</td>
<td>seldom</td>
<td>seldom</td>
</tr>
<tr>
<td>Plant bugs</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Potato leafhopper</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Spittlebug nymphs</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

¹Blister beetles in hay can be toxic to horses.

³When abundant, blister beetles make fresh-cut forage distasteful.
Alfalfa insects

Alfalfa blotch leafminer

The alfalfa blotch leafminer, native to Europe, was first reported in the Midwestern US in 1996.

Adults are small, black, humpbacked flies that emerge from overwintering pupae located on the surface of the soil. The first indication of their presence is the appearance of numerous pinholes (from a few to 100+) in the leaflets. These holes are mostly signs of adult feeding but can also serve as egg-laying sites. Females lay one to three eggs per alfalfa leaflet. Small yellow maggots hatch within the leaf and feed between the upper and lower leaf surfaces. The resulting tunnel usually starts at the base of the leaflet and widens with movement toward the tip of the leaf, resulting in the “blotch” appearance. When fully grown, they crawl out of the leaves, drop to the ground, and pupate. A second generation of flies emerge in about 1 week (mid-July) and is followed by a third generation in late August.

Punctures and blotches result in leaf deterioration and possible defoliation. Leaf damage lessens quality, while leaf-drop reduces yield. Significant yield loss should only occur if damaged leaves drop from the plant or are shaken from the hay during harvesting.

In the upper Midwest, harvest of the first crop normally controls the first generation. Development of the second and third generations, however, may not correspond as closely with cutting schedules, and this could lead to more extensive injury in those cuttings. As is true for the alfalfa weevil, cooler weather favors alfalfa development over that of the insect.

Insecticidal control can be effective if applied during the “pinhole” stage, but treatment will not pay unless leaf drop is extensive. Treatment may be justified when 30 to 40% of the leaflets exhibit pinhole feeding injury. Because the eggs hatch over an extended period, the adults are mobile, and maggots are protected within the leaflet; insecticide trials have had marginal control results.

Biological control of this pest is well established in the northeastern US. Biological control is also a major control factor in the Midwest since parasitized larvae were detected in Wisconsin in 1998.

Alfalfa caterpillar

Larvae are dark green with a narrow white stripe along each side of the body through which runs a thin red line. When fully grown they are 1.5 inches long. This insect is seldom of concern to alfalfa produced in the Midwest, and treatment is not suggested unless populations reach 10 or more per sweep.

The adult stage attracts the most attention because swarms of these sulfur-yellow butterflies can be seen flying over alfalfa fields during mid- to late summer.

Alfalfa weevil

Alfalfa weevil larvae are slate-colored when small but bright green when fully grown (3/8 inch). There is a white stripe down the back, and the head is black. They chew and skeletonize leaves. If larval populations are large, the entire plant may be defoliated, giving the field a grayish cast. Although larvae are present from May well into the summer, peak feeding activity falls off by mid-June.

When full grown, the larvae spin silken cocoons on the plants, within the curl of fallen dead leaves, or within litter on the ground. They change into adults in 1 to 2 weeks. The adults are dark gray to brown snout beetles measuring about 1/4 inch in length. There is a distinct dark shield-like mark on the back. After feeding a short time, most adults leave the field and enter a resting period that lasts until fall. Adults then return to the alfalfa field and lay a few eggs before the onset of cold temperatures. This egg laying is insignificant; most eggs are laid during the following spring.

Although most of the feeding damage is done by larvae, at times adult damage is significant. Larvae and adults can continue to feed on new growth of the second crop. Begin checking alfalfa fields for signs of weevil feeding in mid-May. This usually gives sufficient warning of developing problems. Since peak larval activity typically occurs from mid-May to early June, check fields every few days. However, population peaks vary from year to year, making it difficult to predict the extent of activity and exact time when peak populations will occur. Therefore, it is important to periodically check with your county Extension office for updates on the alfalfa weevil situation.

Control measures should be implemented when 40% of the plant tips of the first crop show obvious signs of damage. This does not mean 40% defoliation, but that 40% of the plants are beginning to show signs of feeding activity. If this occurs within 7-10 days of the suggested harvest date for your area, harvest the hay as soon as possible and watch the stubble for signs of weevil damage to new growth of the second crop. Early cutting will save the cost of an insecticide application. If you cannot harvest, spray as soon as possible. If 40% tip damage is found more than 10 days ahead of the suggested harvest date, the field should be sprayed as soon as possible. Harvesting too early could be detrimental to alfalfa stands. Growers may not be able to harvest fast enough to stay ahead of the weevil in years of high alfalfa weevil abundance. If a field is harvested early because of alfalfa weevil problems, or if substantial damage has occurred with a standard harvesting schedule, the stubble must be checked carefully for signs of damage to new growth of the second crop. Some fields may fail to green up because adults and...
Larvae are consuming new crown buds as fast as they are formed. Check the stubble, the soil surface around alfalfa plants, and under leaf litter for larvae and adults. If you find them and if there is no sign of regrowth in 3-4 days after harvest, spray the stubble as soon as possible. Treatment is also suggested if feeding damage is apparent on 50% of the new growth.

If you find no larvae or adults, lack of regrowth is due to other factors. Remember that dry weather will often delay growth of the new crop.

Aphids

Two types of aphids can be found on alfalfa: the green and rose-colored pea aphids and the spotted alfalfa aphids, which are yellow and faintly dark spotted. Aphids congregate on stems and leaves and suck plant sap. This causes stunting and yellowing of alfalfa. If aphids are abundant, treat before these symptoms occur. Pea aphids can cause significant damage when numbers exceed 100 per sweep, particularly if soil moisture is below plant requirements.

Grasshoppers

Occasionally, grasshoppers are abundant enough to concern farmers. No treatment is suggested until populations reach 20 per square yard in field margins or 8 per square yard within alfalfa fields. Treat while grasshoppers are still small.

Plant bugs

Plant bugs that are particularly important to alfalfa production are the tarnished plant bug and the alfalfa plant bug. The adult tarnished plant bug is 1/4 inch long and brown. Nymphs are green with black spots on the back. Adult alfalfa plant bugs are 3/8 inch long and are light green. Nymphs are green with red eyes.

Plant bugs extract plant sap with their tube-like mouthparts. In high populations, this can result in stunted alfalfa growth or crinkled, puckered leaves. On alfalfa less than 3 inches tall, treat if there are three plant bug adults and/or nymphs per sweep; on taller alfalfa, treat when there are five or more adults and/or nymphs per sweep.

Insecticide applied within 7-10 days of harvest is unlikely to increase alfalfa yield and quality. In addition, preharvest intervals may restrict insecticide use during this time. The best solution for such fields is to harvest early.

Note that while plant bug feeding can stunt plants and cause crinkling and puckering of leaves, these alfalfa growth aberrations also have been found in the absence of plant bugs.

Potato leafhopper

Potato leafhoppers are small (1/8 inch), green, wedge-shaped insects. Adults and nymphs look similar except that adults have wings, and nymphs are smaller and wingless. Leafhopper nymphs can be distinguished from other small green insects by their sideways movement when disturbed. Potato leafhoppers feed on alfalfa by inserting their piercing-sucking mouthparts into leaves and tapping into the food-conducting tissue (phloem) to extract plant sugars, minerals, and other compounds. As they feed, they inject a toxin into the plant to inhibit water and nutrient transport. Feeding damage results in plant stunting, and the yellowing of the leaves in a telltale V-shaped pattern starting at the leaf tip. Serious infestations of leafhoppers will also reduce the yield and protein content of the plants.

Potato leafhoppers are mid- to late-season alfalfa pests that migrate to Wisconsin from southern areas. First-crop alfalfa harvested at the proper time escapes damage. However, monitor subsequent crops for leafhoppers. New seedings must also be monitored carefully and sprayed at threshold. Failure to do so can reduce yield throughout the life of the stand due to stress caused by leafhoppers during establishment.

Because potato leafhopper populations vary from year to year, populations within a given year cannot be predicted, and fields must be monitored weekly to accurately determine damage potential. Both nymphs and adults feed on alfalfa and should be counted together when scouting fields. Use a 15-inch diameter insect sweep net to take samples. A total of 100 sweeps should be taken throughout the field. Walk an M-shape through the field, taking 20 consecutive sweeps in each of five randomly selected areas. To obtain an accurate population estimate, sample when plants are dry and avoid field edges. Cold, wet, or windy conditions may temporarily knock adults and nymphs from plants, resulting in an inaccurate sweep count. As you sample, keep a running total of the number of leafhoppers caught at each location and divide the total by 100. Refer to table 4-7 for treatment thresholds.

Economic thresholds are based on the average number of leafhoppers per sweep and on plant height. Taller plants have higher treatment thresholds because they can withstand more damage and will be harvested sooner than shorter plants.

Table 4-7. Treatment thresholds for potato leafhoppers on alfalfa

<table>
<thead>
<tr>
<th>Alfalfa stem height (inches)</th>
<th>Leafhoppers net sweep average</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td>8–11</td>
<td>1.0</td>
</tr>
<tr>
<td>12–14</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* Treat when leafhopper densities reach these thresholds.

Spittlebugs

Spittlebug nymphs appear in early May in extreme southern Wisconsin. These soft, orange or green bugs can be found in white spittle masses
in leaf axils and later in the clumps of new growth at tips of stems. They suck plant sap and cause stunting but do not yellow the alfalfa. Treat if there is an average of at least one spittlebug per stem.

Insect pests of birdsfoot trefoil, clover, and pasture

Grasshoppers and spittlebugs occasionally cause problems in clover fields.

Grasshoppers are occasionally a problem in pastures. Treat when nymphs are abundant and before migration into row crops is extensive. Apply sprays while grasshoppers are small. Notify nearby beekeepers at least 48 hours before you use an insecticide if blossoming weeds or other plants are present. Do not allow sprays to drift into beeyards or onto blooming crops or weeds.

Use the insecticides listed in table 4-8 to control insect pests of birdsfoot trefoil, clover, and pastures.

Table 4-8. Insecticide suggestions for birdsfoot trefoil, clover, pasture, and rangeland

<table>
<thead>
<tr>
<th>Insect</th>
<th>Insecticidea</th>
<th>Amount of product/a</th>
<th>Remarks, precautionsb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birdsfoot Trefoil Insects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa plant bug</td>
<td>Mustang Maxx</td>
<td>2.24–4.0 fl oz</td>
<td>Preharvest interval (days): 3 for cutting or grazing; 7 for harvesting seed</td>
</tr>
<tr>
<td>Tarnished plant bug</td>
<td></td>
<td></td>
<td>Maximum rate: 12.0 fl oz/a or 0.075 lb ai/a/season</td>
</tr>
<tr>
<td>Plagiognathus plant bug</td>
<td>malathion</td>
<td>See label</td>
<td>(rate varies by formulation).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Grasshoppers</td>
<td>Mustang Maxx</td>
<td>2.8–4.0 fl oz</td>
<td>Preharvest interval (days): 3 for cutting or grazing; 7 for harvesting seed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum rate: 12.0 fl oz/a or 0.075 lb ai/a/season</td>
</tr>
<tr>
<td>Potato leafhoppers</td>
<td>malathion</td>
<td>See label</td>
<td>(rate varies by formulation).</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>Mustang Maxx</td>
<td>2.24–4.0 fl oz</td>
<td>Preharvest interval (days): 3 for cutting or grazing; 7 for harvesting seed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum rate: 12.0 fl oz/a or 0.075 lb ai/a/season</td>
</tr>
<tr>
<td></td>
<td>Sevin XLR Plus</td>
<td>1 qt</td>
<td>Preharvest interval (days): See label (varies by crop)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum rate: 1.5 qt/a per cutting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bee precaution: Do not apply to target crops or weeds in bloom</td>
</tr>
</tbody>
</table>

a All insecticides in this table are to be applied to the plant foliage.

b Notify nearby beekeepers before you use insecticides and apply only between 4 p.m. and nightfall, when bees are least likely to be exposed. Do not treat clover during bloom. Treatment of clover fields that contain blossoming weeds or other plants can result in severe bee losses.
Table 4-8. Insecticide suggestions for birdsfoot trefoil, clover, and pasture (continued)

<table>
<thead>
<tr>
<th>Insect</th>
<th>Insecticide</th>
<th>Amount of product/a</th>
<th>Remarks, precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clover Insects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasshoppers</td>
<td>Mustang Maxx</td>
<td>2.8–4.0 fl oz</td>
<td>Preharvest interval (days): 3 for cutting or grazing; 7 for harvesting seed Maximum rate: 12.0 fl oz/a or 0.075 lb ai/a/season</td>
</tr>
<tr>
<td>Potato leafhoppers</td>
<td>Mustang Maxx</td>
<td>2.24–4.0 fl oz</td>
<td>Preharvest interval (days): 3 for cutting or grazing; 7 for harvesting seed Maximum rate: 12.0 fl oz/a or 0.075 lb ai/a/season</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>1 qt</td>
<td>Preharvest interval (days): See label (varies by crop) Maximum rate: 1.5 qt/a per cutting Bee precaution: Do not apply to target crops or weeds in bloom</td>
<td></td>
</tr>
<tr>
<td>Armyworm in Pasture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold: 3 or more larvae/sq ft, and larvae are less than 0.75–1.0 inch long.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armyworm</td>
<td>Besiege</td>
<td>6.0–10.0 fl oz</td>
<td>Preharvest interval: 0 days for grazing or cut for forage, do not cut grass to be dried for and harvested for hay until 7 days after the last application Maximum rate: 27.0 fl oz/a of Besiege or 0.09 lb ai/a of lambda-cyhalothrin-containing products or 0.2 lb ai/a of chlorantraniliprole-containing products per season</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>2.8–4.0 fl oz</td>
<td>Preharvest interval (days): 0 for forage and hay Maximum rate: 16.0 fl oz/a or 0.10 lb ai/a/season</td>
<td></td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>1.0–1.5 qt</td>
<td>Preharvest interval (days): See label (varies by crop) Maximum rate: 1.5 qt/a per cutting Bee precaution: Do not apply to target crops or weeds in bloom.</td>
<td></td>
</tr>
<tr>
<td>Tracer</td>
<td>1.0–2.0 fl oz</td>
<td>Preharvest interval (days): 3 for hay or fodder, do not allow cattle to graze from treated area until spray has dried. Maximum rate: 6.0 fl oz or 0.188 lb ai spinosad/a/season</td>
<td></td>
</tr>
<tr>
<td>Warrior II</td>
<td>1.28–1.92 fl oz</td>
<td>Preharvest interval (days): 0 or grazing or cut for forage, do not cut grass to be dried and harvested for hay until 7 days after the last application, see label (varies by crop) Maximum rate: 0.09 lb ai/a (5.76 fl oz or 0.36 pt of Warrior II/a) per season</td>
<td></td>
</tr>
<tr>
<td>Grasshoppers in Rangeland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold: 8-40 grasshoppers/sq yd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasshoppers</td>
<td>Besiege</td>
<td>6.0–10.0 fl oz</td>
<td>Preharvest interval: 0 days for grazing or cut for forage, do not cut grass to be dried for and harvested for hay until 7 days after the last application Maximum rate: 27.0 fl oz/a of Besiege or 0.09 lb ai/a of lambda-cyhalothrin-containing products or 0.2 lb ai/a of chlorantraniliprole-containing products per season</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>2.8–4.0 fl oz</td>
<td>Preharvest interval (days): 0 for forage and hay Maximum rate: 16.0 fl oz/a or 0.10 lb ai/a/season</td>
<td></td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>0.5 qt</td>
<td>Comment: May be harvested or grazed the same day as treatment, do not apply more than 1 qt/a per year</td>
<td></td>
</tr>
<tr>
<td>Warrior II</td>
<td>1.28–1.92 fl oz</td>
<td>Preharvest interval (days): 0 or grazing or cut for forage, do not cut grass to be dried and harvested for hay until 7 days after the last application, see label (varies by crop) Maximum rate: 0.09 lb ai/a (5.76 fl oz or 0.36 pt of Warrior II/a) per season</td>
<td></td>
</tr>
</tbody>
</table>

* All insecticides in this table are to be applied to the plant foliage.
* Notify nearby beekeepers before you use insecticides and apply only between 4 p.m. and nightfall, when bees are least likely to be exposed. Do not treat clover during bloom. Treatment of clover fields that contain blossoming weeds or other plants can result in severe bee losses.
Insecticide suggestions for alfalfa

Alfalfa blotch leafminer
Treatment may be warranted when 30 to 40% of leaflets exhibit pinhole feeding injury.

Baythroid XL
Rate: 2.0-2.8 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/a (0.175 lb ai/a) per season; 5.6 fl oz/a (0.044 lb ai/a) allowed per cutting

Besiege
Rate: 9.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bees precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 1.54 fl oz
Active ingredient: gamma-cyhalothrin

Imidan 70W
Rate: 1.0-1.33 lb
Active ingredient: phosmet
IRAC code: 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than once per cutting

Do not apply to alfalfa in the bloom period. Do not use with latex or pineolene-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): See label (varies by application rate)
Maximum rate: Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Bees precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.

Sevin XLR Plus
Rate: 1.0-1.5 qt
Active ingredient: carbaryl
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 1.5 qt/a per cutting

Bees precaution: Do not apply to target crops or weeds in bloom.

Silencer
Rate: 3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 hay, 1 forage
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): Do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt.
Maximum rate: single application of 2 pt/a; Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
Rate: 1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/a (7.68 fl oz or 0.48 pt/a of Warrior II) per season

Bees precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Alfalfa caterpillar
10 or more larvae per sweep

Ambush 2EC
Rate: 3.2-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 14 for rates higher than 0.1 ai/a, for rates less 0.10 or less application may be made on day of harvest.
Maximum rate: Do not apply more than 0.2 lb ai/a per cutting

Avoid applications when bees are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/a (0.175 lb ai/a) per season
<table>
<thead>
<tr>
<th>Product Name</th>
<th>Rate</th>
<th>Active Ingredient</th>
<th>IRAC code</th>
<th>Preharvest Interval</th>
<th>Maximum Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belt 4SC</td>
<td>2.0-4.0 fl oz/a</td>
<td>flubendiamide</td>
<td>3A, 28</td>
<td>0 forage and hay</td>
<td>1 day for forage and hay</td>
<td>Do not apply more than 4.0 fl oz/a/cutting. Do not apply more than 12.0 fl oz per acre (0.375 lb ai/A) per year</td>
</tr>
<tr>
<td>Besiege</td>
<td>5.0-8.0 fl oz</td>
<td>lambda-cyhalothrin, chlorantraniliprole</td>
<td>3A, 28</td>
<td>1 day for forage and 7 days for hay</td>
<td>31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season</td>
<td>Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.</td>
</tr>
<tr>
<td>Cobalt Advanced</td>
<td>11.0-26.0 fl oz</td>
<td>chlorpyrifos, lambda-cyhalothrin</td>
<td>1B, 3A</td>
<td>See label (varies by application rate)</td>
<td>1.19 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season</td>
<td>Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.</td>
</tr>
<tr>
<td>Fastac EC</td>
<td>2.2-3.8 fl oz</td>
<td>alpha-cypermethrin</td>
<td>3A</td>
<td>3 days for cutting or grazing</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Fastac SC</td>
<td>2.2-3.8 fl oz</td>
<td>alpha-cypermethrin</td>
<td>3A</td>
<td>3 days for cutting or grazing</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application.</td>
</tr>
<tr>
<td>Lorsban Advanced</td>
<td>1.0-2.0 pt</td>
<td>chlorpyrifos</td>
<td>1B</td>
<td>See label (varies by application rate)</td>
<td>Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a</td>
<td>Bee precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.</td>
</tr>
<tr>
<td>Mustang</td>
<td>2.4-4.3 fl oz</td>
<td>zeta-cypermethrin</td>
<td>3A</td>
<td>3 for cutting or grazing</td>
<td>8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)</td>
<td></td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>2.24-4.0 fl oz</td>
<td>zeta-cypermethrin</td>
<td>3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>1.92-3.2 fl oz/a</td>
<td>carbaryl</td>
<td>1A</td>
<td>7 hay, 1 forage</td>
<td>1.5 qt/a per cutting</td>
<td>Bee precaution: Do not apply to target crops or weeds in bloom.</td>
</tr>
<tr>
<td>Silencer</td>
<td>1.5-4.0 fl oz</td>
<td>lambda-cyhalothrin</td>
<td>3A</td>
<td>7 days of harvesting seed</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td></td>
</tr>
<tr>
<td>Stallion</td>
<td>5.0-11.75 fl oz</td>
<td>zeta-cypermethrin, chlorpyrifos</td>
<td>3A, 1B</td>
<td>7 hay</td>
<td>35.25 fl oz/a of Stallion (0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season</td>
<td>Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.</td>
</tr>
<tr>
<td>Vulcan</td>
<td>1-2 pts/a</td>
<td>chlorpyrifos</td>
<td>1B</td>
<td>7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt</td>
<td>4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)</td>
<td>Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.</td>
</tr>
<tr>
<td>Insect Control Product</td>
<td>Rate</td>
<td>Active Ingredient</td>
<td>IRAC Code</td>
<td>Preharvest Interval (Days)</td>
<td>Maximum Rate</td>
<td>Bee Precaution</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Warrior II</td>
<td>0.96-1.6 fl oz</td>
<td>lambda-cyhalothrin</td>
<td>3A</td>
<td>1 for forage and 7 for hay</td>
<td>0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a) per season</td>
<td>Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidan 70W</td>
<td>1.0-1.33 lb</td>
<td>phosmet</td>
<td>1B</td>
<td>7</td>
<td>0.94 lb ai of Besiege (2 pt Lorsban Advanced)/a</td>
<td>Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Fastac SC</td>
<td>2.2-3.8 fl oz</td>
<td>alphacypermethrin</td>
<td>3A</td>
<td>3 for cutting or grazing</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>Apply during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Fastac EC</td>
<td>2.2-3.8 fl oz</td>
<td>alphacypermethrin</td>
<td>3A</td>
<td>3 for cutting or grazing</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>2.24-4.0 fl oz</td>
<td>zeta-cypermethrin</td>
<td>3A</td>
<td>3 for cutting or grazing</td>
<td>4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)</td>
<td>Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>1.5 qt</td>
<td>carbaryl</td>
<td>1A</td>
<td>7</td>
<td></td>
<td>Apply during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.</td>
</tr>
</tbody>
</table>

Alfalfa weevil

40% of plants with tip feeding on first crop; 50% feeding damage on second crop regrowth.
Maximum rate: 1.5 qt/a per cutting
Bee precaution: Do not apply to target crops or weeds in bloom.

Silencer
Rate: 2.56-3.84 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7, 1 forage
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season.

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 7
Maximum rate: 35.25 fl oz/a of Stallion (0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season. Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): Do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt.
Maximum rate: single application of 2 pt/a, Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a of Warrior II) per season
Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Aphid
100 aphids per sweep

Ambush 2EC
Rate: 3.2-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 14 for rates higher than 0.1 ai/a, for rates less 0.10 or less application may be made on day of harvest.
Maximum rate: Do not apply more than 0.2 lb ai/a per cutting
Avoid applications when bees are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Besiege
Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chiorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season.
Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
Rate: 11.0-26.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season
Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 0.06 lb ai (0.38 pt)/a/season
Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed.
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season
Aphid control may be variable depending on species and host-plant relationships.

Fastac SC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed.
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Imidan 70W
Rate: 1.0-1.33 lb
Active ingredient: phosmet
IRAC code: 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than once per cutting
Do not apply to alfalfa in the bloom period. Do not use with latex or pineolene-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): See label (varies by application rate)
Maximum rate: Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Bee precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.

Mustang
Rate: 2.4-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)

Mustang Maxx
Rate: 2.24-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)

Silencer
Rate: 2.56-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 hay, 1 forage
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season.

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 7
Maximum rate: 35.25 fl oz/a of Stallion (0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season.
Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): Do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt.
Maximum rate: single application of 2 pt/a, Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a of Warrior II) per season

Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Ambush 2EC
Rate: 3.2-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 14 for rates higher than 0.1 ai/a, for rates less 0.10 or less application may be made on day of harvest
Maximum rate: Do not apply more than 0.2 lb ai/a per cutting

Avoid applications when bee are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Baythroid XL
Rate: 1.6-2.8 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/a (0.175 lb ai/a) per season; 5.6 fl oz/a (0.044 lb ai/a) allowed per cutting

Due to potential injury to bees, do not apply to alfalfa grown for seed.

Besiege
Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay.
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 0.06 lb ai (0.38 pt)/a/season

Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.
<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient(s)</th>
<th>Rate</th>
<th>Preharvest Interval</th>
<th>Maximum Rate</th>
<th>IRAC Code(s)</th>
<th>Bee Precaution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastac EC</td>
<td>alpha-cypermethrin</td>
<td>0.12 lb ai/a (7.68 fl oz/a)</td>
<td>7 days for cutting or grazing; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>0.94 lb ai chlorpyrifos (2 pt Lorsban) per season</td>
<td>1A</td>
<td>Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.</td>
</tr>
<tr>
<td>Fastac SC</td>
<td>alpha-cypermethrin</td>
<td>2.24-4.3 fl oz</td>
<td>3 days for cutting or grazing</td>
<td>3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season</td>
<td>3A</td>
<td>None established</td>
</tr>
<tr>
<td>Lorsban Advanced</td>
<td>chlorpyrifos</td>
<td>1.0-2.0 pt</td>
<td>See label (varies by application rate)</td>
<td>Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a</td>
<td>1B</td>
<td>None established</td>
</tr>
<tr>
<td>Mustang</td>
<td>zeta-cypermethrin</td>
<td>2.4-4.3 fl oz</td>
<td>3 days for cutting or grazing</td>
<td>8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)</td>
<td>3A</td>
<td>None established</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>zeta-cypermethrin</td>
<td>2.24-4.0 fl oz</td>
<td>3 days for cutting or grazing</td>
<td>4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)</td>
<td>3A</td>
<td>None established</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>carbaryl</td>
<td>1.0-1.5 qt</td>
<td></td>
<td></td>
<td></td>
<td>None established</td>
</tr>
</tbody>
</table>

Cutworm

Ambush 2EC

Baythroid XL

Belt 4SC

Besiege
of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
- **Rate:** 11.0-26.0 fl oz
- **Active ingredient:** chlorpyrifos, lambda-cyhalothrin
- **IRAC code:** 1B, 3A
- **Preharvest interval (days):** See label (varies by application rate)
- **Maximum rate:** 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
- **Rate:** 0.77-1.28 fl oz
- **Active ingredient:** gamma-cyhalothrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 1 day for forage and 7 days for hay.
- **Maximum rate:** 0.06 lb ai (0.38 pt)/a/season

Avoid application when bees are actually foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC
- **Rate:** 2.2-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 3 days for cutting or grazing, 7 days of harvesting seed
- **Maximum rate:** 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Fastac SC
- **Rate:** 2.2-3.8 fl oz
- **Active ingredient:** alpha-cypermethrin
- **IRAC code:** 3A, 18
- **Preharvest interval (days):** 7
- **Maximum rate:** 35.25 fl oz/a of Fastac SC

IRAC code: 3A
- **Preharvest interval (days):** 3 days for cutting or grazing, 7 days of harvesting seed
- **Maximum rate:** 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Lorsban Advanced
- **Rate:** 1.0-2.0 pt
- **Active ingredient:** chlorpyrifos
- **IRAC code:** 1B
- **Preharvest interval (days):** See label (varies by application rate)
- **Maximum rate:** Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Mustang
- **Rate:** 2.4-4.3 fl oz
- **Active ingredient:** zeta-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 3 for cutting or grazing
- **Maximum rate:** 8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)

Mustang Maxx
- **Rate:** 2.24-4.0 fl oz
- **Active ingredient:** zeta-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 3 for cutting or grazing
- **Maximum rate:** 4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)

Sevin XLR Plus
- **Rate:** 1.0-1.5 qt
- **Active ingredient:** carbaryl
- **IRAC code:** 1A
- **Preharvest interval (days):** 7
- **Maximum rate:** 1.5 qt/a per cutting

Stallion
- **Rate:** 2.5-11.75 fl oz
- **Active ingredient:** zeta-cypermethrin, chlorpyrifos
- **IRAC code:** 3A, 1B
- **Preharvest interval (days):** 7
- **Maximum rate:** 35.25 fl oz/a of Stallion

(0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season.

Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Silencer
- **Rate:** 1.92-3.2 fl oz/a
- **Active ingredient:** lambda-cyhalothrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 7 day, 1 forage
- **Maximum rate:** Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt) per acre per season

Vulcan
- **Rate:** 1-2 pts/a
- **Active ingredient:** chlorpyrifos
- **IRAC code:** 1B
- **Preharvest interval (days):** do not cut or graze
- **Maximum rate:** single application of 2 pt/a. Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
- **Rate:** 0.96-1.6 fl oz
- **Active ingredient:** lambda-cyhalothrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 1 for forage and 7 for hay
- **Maximum rate:** 0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a of Warrior II) per season

Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.
Grasshopper

20 per sq yd in field margins or 8 per sq yd within alfalfa fields

Baythroid XL
Rate: 2.0-2.8 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/a (0.175 lb ai/a) per season; 5.6 fl oz/a (0.044 lb ai/a) allowed per cutting

Due to potential injury to bees, do not apply to alfalfa grown for seed.

Besiege
Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
Rate: 6.0-13.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A

Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 0.06 lb ai (0.38 pt)/a/season
Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC
Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Fastac SC
Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Imidan 70W
Rate: 1.0-1.33 lb
Active ingredient: phosmet
IRAC code: 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than once per cutting
Do not apply to alfalfa in the bloom period. Do not use with latex or pineolene-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced
Rate: 0.5-1.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): See label (varies by application rate)
Maximum rate: Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Bee precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.

Mustang
Rate: 2.4-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 8.6 fl oz (0.11 lb)/cutting; 25.8 fl oz/a/season (0.15 lb)

Mustang Maxx
Rate: 2.24-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 4.0 fl oz (0.025 lb)/cutting; 12.0 fl oz/a/season (0.075 lb)

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 7
Maximum rate: 35.25 fl oz/a of Stallion (0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season.
Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Silencer
Rate: 2.56-3.2 fl oz/a
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 hay, 1 forage
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt) per acre per season.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt
Maximum rate: single application of 2 pt/a. Do not make more than 4 applications of Vulcan or
products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II

Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a of Warrior II) per season

Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Ambush 2EC

Rate: 6.4-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 14 for rates higher than 0.1 ai/a, for rates less 0.10 or less application may be made on day of harvest
Maximum rate: Do not apply more than 0.2 lb ai/a per cutting

Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Baythroid XL

Rate: 1.6-2.8 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/a (0.175 lb ai/a) per season; 5.6 fl oz/a (0.044 lb ai/a) allowed per cutting

Due to potential injury to bees, do not apply to alfalfa grown for seed.

Plant bug

On alfalfa less than 3 inches tall, treat if there are 3 adults and/or nymphs per sweep; on taller alfalfa, treat when there are 5 or more adults and/or nymphs per sweep.

Besiege

Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced

Rate: 16.0-38.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS

Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 0.06 lb ai (0.38 pt)/a/season

Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC

Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Fastac SC

Rate: 2.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Imidan 70W

Rate: 1.0-1.33 lb
Active ingredient: phosmet
IRAC code: 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than once per cutting

Do not apply to alfalfa in the bloom period. Do not use with latex or pineelee-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced

Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): See label (varies by application rate)
Maximum rate: Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Mustang Maxx

Rate: 2.8-4.0 fl oz/a fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season
grazing
Maximum rate: 4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/ac/season (0.075 lb)

Stallion
Rate: 11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 7
Maximum rate: 35.25 fl oz/ac of Stallion (0.075 lb ai/ac zeta-cypermethrin + 0.75 lb ai/ac chlorpyrifos) per season.
Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Silencer
Rate: 2.56-3.2 fl oz/ac
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 7 hay, 1 forage
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season.

Vulcan
Rate: 1-2 pts/ac
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt
Maximum rate: single application of 2 pt/ac, Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/ac (7.68 fl oz/ac or 0.48 pt/ac of Warrior II) per season
Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Potato leafhopper
Treat at 0.2 leaffoppers per sweep on 3 inch tall alfalfa; 0.5 per sweep on 6 inch alfalfa, 1 leaffopper per sweep on 8-11 inch alfalfa, and 2 leaffoppers per sweep on 12-14 inch alfalfa.

Ambush 2EC
Rate: 3.2-12.8 fl oz
Active ingredient: permethrin
IRAC code: 3A
Preharvest interval (days): 14 for rates higher than 0.1 ai/ac, for rates less 0.10 or less application may be made on day of harvest
Maximum rate: Do not apply more than 0.2 lb ai/ac/pt cutting
Avoid applications when bees are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Baythroid XL
Rate: 0.8-1.6 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 7
Maximum rate: 22.4 fl oz/ac (0.175 lb ai/ac) per season; 5.6 fl oz/ac (0.044 lb ai/ac) allowed per cutting
Due to potential injury to bees, do not apply to alfalfa grown for seed.

Besiage
Rate: 5.0-8.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/ac/season
Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
Rate: 6.0-13.0 fl oz
Active ingredient: chlorpyrifos, lambda-cyhalothrin
IRAC code: 1B, 3A
Preharvest interval (days): See label (varies by application rate)
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/ac/season
Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 0.77-1.28 fl oz
Active ingredient: gamma-cyfluthrin
IRAC code: 3A
Preharvest interval (days): 1 day for forage and 7 days for hay
Maximum rate: 0.06 lb ai (0.38 pt)/ac/season
Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/ac/season; and a maximum of 11.4 fl oz (0.075 lb ai)/ac/season

Fastac SC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/ac/season; and a maximum of 11.4 fl oz (0.075 lb ai)/ac/season
Imidan 70W
- **Rate:** 1.0-1.33 lb
- **Active ingredient:** phosmet
- **IRAC code:** 1B
- **Preharvest interval (days):** 7
- **Maximum rate:** Do not apply more than once per cutting

Do not apply to alfalfa in the bloom period. Do not use with latex or pineolene-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced
- **Rate:** 0.5-1.0 pt
- **Active ingredient:** chlorpyrifos
- **IRAC code:** 1B
- **Preharvest interval (days):** See label (varies by application rate).
- **Maximum rate:** Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Bee precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.

Mustang
- **Rate:** 2.4-4.3 fl oz
- **Active ingredient:** zeta-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 3 for cutting or grazing
- **Maximum rate:** 8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)

Mustang Maxx
- **Rate:** 2.24-4.0 fl oz
- **Active ingredient:** zeta-cypermethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 3 for cutting or grazing
- **Maximum rate:** 4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)

Sevin XLR Plus
- **Rate:** 1 qt
- **Active ingredient:** carbaryl
- **IRAC code:** 1A
- **Preharvest interval (days):** 7
- **Maximum rate:** 1.5 qt/a per cutting
- **Bee precaution:** Do not apply to target crops or weeds in bloom.

Stallion
- **Rate:** 5.0-11.75 fl oz
- **Active ingredient:** zeta-cypermethrin, chlorpyrifos
- **IRAC code:** 3A, 1B
- **Preharvest interval (days):** 7
- **Maximum rate:** 35.25 fl oz/a of Stallion (0.075 lb ai/a zeta-cypermethrin + 0.75 lb ai/a chlorpyrifos) per season

Do not tank-mix with other pesticides, surfactants, or fertilizer formulations unless prior use has shown the combination to be non-injurious to alfalfa under current conditions of use. Some phytotoxic symptoms may be observed on young, tender, rapidly growing alfalfa treated with Stallion. Alfalfa will outgrow these symptoms and no yield loss should be expected.

Silencer
- **Rate:** 2.56-3.2 fl oz/a
- **Active ingredient:** lambda-cyhalothrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 7 hay, 1 forage
- **Maximum rate:** Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt) per acre per season

Vulcan
- **Rate:** 1-2 pts/a
- **Active ingredient:** chlorpyrifos
- **IRAC code:** 1B
- **Preharvest interval (days):** do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt.
- **Maximum rate:** single application of 2 pt/a. Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Ambush 2EC
- **Rate:** 6.4-12.8 fl oz
- **Active ingredient:** permethrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 14 for rates higher than 0.1 ai/a, for rates less 0.10 or less application may be made on day of harvest
- **Maximum rate:** Do not apply more than 0.2 lb ai/a per cutting

Avoid applications when bees are actively foraging by applying during the early morning or during the evening hours. Do not apply to mixed stands with intentionally grown forage grasses.

Baythroid XL
- **Rate:** 0.8-1.6 fl oz
- **Active ingredient:** cyfluthrin
- **IRAC code:** 3A
- **Preharvest interval (days):** 7
- **Maximum rate:** 22.4 fl oz/a (0.175 lb ai/a) per season; 5.6 fl oz/a (0.044 lb ai/a) allowed per cutting

Due to potential injury to bees, do not apply to alfalfa grown for seed.

Besiege
- **Rate:** 6.0-10.0 fl oz
- **Active ingredient:** lambda-cyhalothrin, chlorantraniliprole
- **IRAC code:** 3A, 28
- **Preharvest interval (days):** 1 day for forage and 7 days for hay
- **Maximum rate:** 31.0 fl oz of Besiege or 0.12 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/season

Bee precaution: Make applications when bees are not actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. Remove bee shelters during and for 2-3 days following application. Do not apply directly to bee shelters.

Cobalt Advanced
- **Rate:** 16.0-38.0 fl oz
- **Active ingredient:** chlorpyrifos, lambda-cyhalothrin
- **IRAC code:** 1B, 3A

Due to potential injury to bees, do not apply to alfalfa grown for seed.

Treat fruit if there is an average of at least 1 spittlebug per plant.
Preharvest interval (days): See label (varies by application rate).
Maximum rate: 119 fl oz of Cobalt Advanced (2.3 lb ai chlorpyrifos and 0.12 lb ai lambda-cyhalothrin)/a/season

Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are actively foraging in the treated area.

Declare 1.25CS
Rate: 1.02-1.54 fl oz
Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 day for forage and 7 days for hay.
Maximum rate: 0.06 lb ai (0.38 pt)/a/season

Avoid application when bees are actively foraging by applying during the early morning or during evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2 to 3 days following application. Avoid direct application to bee shelters.

Fastac EC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Fastac SC
Rate: 2.2-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 days for cutting or grazing, 7 days of harvesting seed
Maximum rate: 3.8 fl oz (0.025 lb ai)/a per cutting; and a maximum of 11.4 fl oz (0.075 lb ai)/a per season

Imidan 70W
Rate: 1.0-1.33 lb
Active ingredient: phosmet
IRAC code: 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than once per cutting

Do not apply to alfalfa in the bloom period. Do not use with latex or pineolene-based adjuvants or any agricultural sticker or extender.

Lorsban Advanced
Rate: 1.0-2.0 pt
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): See label (varies by application rate)
Maximum rate: Maximum single application rate is 0.94 lb ai chlorpyrifos (2 pt Lorsban Advanced)/a

Bee precaution: Highly toxic to bees exposed to direct treatment on alfalfa. Do not apply if nearby bees are clustered outside of hives and bees are foraging in the treated area.

Mustang
Rate: 2.4-4.3 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 8.6 fl oz (0.1 lb)/cutting, 25.8 fl oz/a/season (0.15 lb)

Mustang Maxx
Rate: 2.24-4.0 fl oz
Active ingredient: zeta-cypermethrin
IRAC code: 3A
Preharvest interval (days): 3 for cutting or grazing
Maximum rate: 4.0 fl oz (0.025 lb)/cutting, 12.0 fl oz/a/season (0.075 lb)

Stallion
Rate: 9.25-11.75 fl oz
Active ingredient: zeta-cypermethrin, chlorpyrifos
IRAC code: 3A, 1B
Preharvest interval (days): 7
Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season.

Vulcan
Rate: 1-2 pts/a
Active ingredient: chlorpyrifos
IRAC code: 1B
Preharvest interval (days): do not cut or graze 7 days after application of 0.50 pts, 14 days after application of 1 pt, 21 days after application of 2 pt
Maximum rate: single application of 2 pt/a. Do not make more than 4 applications of Vulcan or products containing chlorpyrifos per year or apply more than once per crop cutting. Do not make a second application of Vulcan within 10 days of the first application.

Warrior II
Rate: 1.28-1.92 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 1 for forage and 7 for hay
Maximum rate: 0.12 lb ai/a (7.68 fl oz/a or 0.48 pt/a of Warrior II) per season

Bee precaution: Avoid application when bees are actively foraging by applying during the early morning or during the evening hours. Be aware of bee hazard resulting from a cool evening and/or morning dew. It may be advisable to remove bee shelters during and for 2-3 days following application. Avoid direct application to bee shelters.

Maximum rate: Do not apply more than 0.03 lb ai (0.24 pt) per acre per cutting. Do not apply more than 0.12 lb ai (0.96 pt.) per acre per season.
Forage disease management

Many disease-causing organisms attack forages in Wisconsin. Any approach to plant disease control requires identification and knowledge of the cause and its life cycle, the effect of environment on disease development, and the potential control procedures available. Economic and environmental factors often determine the control procedures employed for these various diseases. Control strategies can be an integration of the following methods: planting resistant or tolerant varieties, proper crop management, and agricultural chemicals. There are a few foliar fungicides currently labeled for use in alfalfa, including Headline, Kocide 3000, and Quadris (see table 4-9). Note that all of these products have very specific labels regarding use. In particular, pay close attention to the diseases that are controlled, the pre-harvest intervals within a cutting, the total number of allowed applications within a cutting period and across the whole growing season, and the application amounts allowed. We recommend consulting specific labels prior to using a product in alfalfa.

Variety selection is key to disease management in forages and small grains. Refer to Extension publication Forage Variety Update for Wisconsin (A1525) for specific disease resistance ratings. This publication is updated each year with new test data for each variety.

The forage diseases section focuses on alfalfa (table 4-10), followed by brief sections on red clover and forage grasses.

Alfalfa leaf and stem diseases

Although leaf and stem diseases occur in almost every alfalfa field, their severity is dependent upon periods of wet weather and/or heavy dews. While leaf and stem diseases may reduce alfalfa yields, their main effect is reducing the nutritional value of the forage. Severe leaf disease can cause excessive leaf drop; the leaves of alfalfa plants contain much more protein and are more digestible than the stems.

Except for anthracnose, alfalfa varieties have not been characterized for reaction to leaf and stem diseases. While there are no alfalfa varieties available with documented resistance, observations indicate that varieties differ in reaction to leaf-infecting pathogens. An important cultural practice that can minimize losses due to leaf and stem diseases is harvesting the crop at the bud stage or no later than 10% flower. Many leaf diseases increase dramatically after the first flower stage. By harvesting in a timely fashion, you can avoid having to spray your crop with foliar fungicides to control diseases. Also, leaf and stem diseases can be more severe when alfalfa is seeded with a companion crop. Leaf diseases common to Wisconsin are common leaf spot, downy mildew, Stemphylium leaf spot, and Septoria leaf spot. Spring black stem and summer black stem result in leaf loss but as their names imply, are diseases of stems and crowns. Anthracnose is also a disease of stems and crowns.

Alfalfa seedling diseases

Stand establishment failure due to seedling diseases has become more common in Wisconsin. Aphanomyces, Pythium, Phytophthora, and Rhizoctonia are the soil fungi considered to be major causes. Seeding failures are more commonly reported in fields with soils that become waterlogged for 7-14 days. In addition, many reports are associated with direct seeding. However, this may be because the development of plants established by direct seeding are more easily monitored than plants seeded with a companion crop such as oat. Often seeding failures are blamed on the companion crop from such factors as lodging. Phytophthora/Aphanomyces-resistant alfalfa varieties are available and should be planted in fields that periodically have waterlogged soils. Alfalfa varieties range from highly susceptible to highly resistant to Phytophthora and Aphanomyces. No information is available on variety reactions to Pythium and Rhizoctonia. Fungicides offer some control in the early seedling phase (see table 4-11 for more information on alfalfa seed treatments).

Alfalfa root and crown diseases

Root and crown diseases play a major role in establishment and stand longevity problems in Wisconsin. Often, low soil fertility, winter injury, and soil insects work together with disease organisms to reduce alfalfa stands. Stand losses can be minimized by planting varieties that are resistant to several diseases, and using crop management practices that minimize stress on stands. Crop rotation is of little value for control of most alfalfa diseases because most pathogens either survive indefinitely in the soil or are introduced with forage debris in seed. However, good management practices can prolong the productivity and life of plants that survive the initial infection.

- **Select disease-resistant varieties.** Consult Extension publication Forage Variety Update for Wisconsin (A1525) for specific disease reaction ratings. This publication is updated each year with new test data for each variety.

- **Integrate cultural practices.** Planting resistant varieties is the most effective way to control disease. However, other cultural practices can be used to reduce disease pressure. These include:
 - **Planting resistant varieties.** Choose varieties that are resistant to the diseases present in your area.
 - **Avoid planting susceptible varieties in high-risk areas.** If you have a history of disease problems, consider planting resistant varieties in those areas.
 - **Use proper planting practices.** Ensure proper seed placement, soil preparation, and plant density to promote healthy plant growth and minimize disease development.
 - **Monitor for disease early.** Regularly inspect for disease symptoms and monitor yields to detect problems early.
 - **Treat with fungicides.** Apply fungicides as needed to control disease outbreaks. Follow label instructions carefully to avoid overuse.
 - **Manage soil moisture.** Proper soil moisture management can help reduce disease incidence. Avoid waterlogging and maintain adequate soil aeration.
 - **Rotate crops.** Crop rotation can help manage disease pressure by breaking the disease cycle. Consider rotating to other crops that are not affected by the same disease.
 - **Use proper rotational cycles.** Follow recommended rotational cycles to minimize disease buildup. For example, rotate forages with non-host crops to reduce disease pressure.
 - **Improve soil health.** Healthy soils support healthy plants, which are less susceptible to disease.
 - **Maintain proper plant densities.** Overcrowding can lead to poor air movement and increased disease pressure.
 - **Practice good sanitation.** Remove infected plant material to reduce disease inoculum.

- **Avoid planting in high-risk areas.** If you have a history of disease problems, consider planting resistant varieties in those areas.

- **Use proper planting practices.** Ensure proper seed placement, soil preparation, and plant density to promote healthy plant growth and minimize disease development.

- **Monitor for disease early.** Regularly inspect for disease symptoms and monitor yields to detect problems early.

- **Treat with fungicides.** Apply fungicides as needed to control disease outbreaks. Follow label instructions carefully to avoid overuse.

- **Manage soil moisture.** Proper soil moisture management can help reduce disease incidence. Avoid waterlogging and maintain adequate soil aeration.

- **Rotate crops.** Crop rotation can help manage disease pressure by breaking the disease cycle. Consider rotating to other crops that are not affected by the same disease.

- **Use proper rotational cycles.** Follow recommended rotational cycles to minimize disease buildup. For example, rotate forages with non-host crops to reduce disease pressure.

- **Improve soil health.** Healthy soils support healthy plants, which are less susceptible to disease.

- **Maintain proper plant densities.** Overcrowding can lead to poor air movement and increased disease pressure.

- **Practice good sanitation.** Remove infected plant material to reduce disease inoculum.
• **Maintain good soil fertility.** This promotes extensive lateral root development above the diseased region of the root and extends the life of the plant.

• **Avoid untimely cuttings.** This might stress the plants. Heavy rains immediately after cutting often result in severe Phytophthora root rot infections. For example, do not cut between September 1 and October 15.

• **Control leaf-feeding insects.** These can stress plants by making them more susceptible to root and crown diseases.

• **Improve surface and subsurface drainage.** Till and land-level, if practical, to reduce root and crown diseases.

Table 4-9. Fungicides registered for foliar alfalfa diseases in Wisconsin

<table>
<thead>
<tr>
<th>Fungicide(s)</th>
<th>Anthracnose</th>
<th>Common leaf spot</th>
<th>Downy mildew</th>
<th>Leptosphaeria leaf spot</th>
<th>Powdery mildew</th>
<th>Rust</th>
<th>Septoria black stem and leaf spot</th>
<th>Stagonospora leaf spot</th>
<th>Stemphylium leaf spot</th>
<th>Summer black stem and leaf spot</th>
<th>Yellow leaf blotch</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endura</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>bosalid</td>
<td>carboximides (7)</td>
<td>6.5 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum of two applications/cutting and three applications/season. Do not apply more than 19.5 fl oz/a per season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontelis</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- pencyopyrad</td>
<td>carboximide (7)</td>
<td>12-24 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No more than two sequential applications before switching to a fungicide with a different mode of action. Do not exceed 48 fl oz/a/year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headline EC</td>
<td>x</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x pyraclostrobin</td>
<td>Qol (11)</td>
<td>6-9 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headline SC</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No more than three foliar applications/year. Do not apply more than 27 fl oz/a per year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocide 2000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>copper hydroxide</td>
<td>inorganic (M1)</td>
<td>1.5 lb</td>
<td>0 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocide 3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.75 lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than 3.2 lb/a per season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priaxor</td>
<td>x</td>
<td>4</td>
<td>x</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x fluxapyroxad + pyraclostrobin</td>
<td>carboximide (7) + Qol (11)</td>
<td>4-6.9 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No more than three foliar applications/year. Do not apply more than 20.7 fl oz/a per year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristine</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x pyraclostrobin + bosalid</td>
<td>Qol (11) + carboximides (7)</td>
<td>12-18 oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than two applications/cutting or more than three applications/growing season. Do not apply more than 54 oz/a per season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadris</td>
<td>x</td>
<td>2</td>
<td>x</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x azoxystrobin</td>
<td>Qol (11)</td>
<td>6–15.5 fl oz</td>
<td>14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Do not apply more than two applications/cutting or more than three applications/growing season. Do not apply more than 54 oz/a per season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efficacy ratings: Excellent = 10; very good = 8; good = 6; fair = 4; poor = 2; no control = 0; labeled, no data = x; not labeled = -

*FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.

* Suppression only.
Fusarium wilt
Fusarium wilt, caused by the fungus *Fusarium oxysporum f. sp. medicaginis*, is economically damaging throughout Wisconsin but is especially a problem in sandy loam soils.

Because the pathogen survives indefinitely in the soil, crop rotation is not an effective control. Planting resistant alfalfa varieties is the only practical control. Many varieties are resistant to Fusarium wilt.

Verticillium wilt
The Verticillium wilt fungus invades the plant’s vascular system and reduces the flow of water and nutrients to stems and leaves. Infected alfalfa plants may be killed either during the growing season or over winter. Verticillium wilt becomes more apparent after the second year of a stand. It is important for growers and agricultural consultants to be able to recognize Verticillium wilt and to use methods to limit its spread.

The following measures minimize the chances of introducing the fungus to an area and spreading the disease between and within fields.

- **Resistant varieties.** Alfalfa varieties differ in reaction to Verticillium wilt. Carefully select alfalfa varieties with resistance to the prevalent diseases in your area.
- **Harvesting suggestions.** Harvest recent seedings first and harvest fields at the hard-bud or early flower stage. Early harvest can limit some yield and quality losses caused by Verticillium wilt and can slow the spread of the wilt fungus in a field.

Phytophthora root rot
Phytophthora root rot (PRR) is a major cause of alfalfa stand depletion. PRR can kill individual plants scattered throughout the field, all plants in irregularly shaped patches, or entire fields. The disease is most severe in fields with poor internal drainage or fields where soils become saturated by excessive rainfall or irrigation.

Alfalfa varieties with high levels of PRR resistance are available to Wisconsin growers. Growers should be aware that alfalfa varieties rated PRR resistant vary greatly in extent of resistance.

Table 4-10. Probability and occurrence of alfalfa diseases in stands of different ages

<table>
<thead>
<tr>
<th>Disease</th>
<th>Harvest (established stand)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup></td>
<td>2<sup>nd</sup></td>
</tr>
<tr>
<td>Anthracnose</td>
<td>—</td>
<td>moderate</td>
</tr>
<tr>
<td>Aphanomyces root rot</td>
<td>moderate</td>
<td>high</td>
</tr>
<tr>
<td>Bacterial wilt</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Common leaf spot</td>
<td>moderate</td>
<td>high</td>
</tr>
<tr>
<td>Downy mildew</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Fusarium crown root rot</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Fusarium wilt</td>
<td>low</td>
<td>moderate</td>
</tr>
<tr>
<td>Phytophthora root rot</td>
<td>moderate</td>
<td>high</td>
</tr>
<tr>
<td>Pythium root rot</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Spring black stem</td>
<td>high</td>
<td>moderate</td>
</tr>
<tr>
<td>Summer black stem</td>
<td>—</td>
<td>moderate</td>
</tr>
<tr>
<td>Verticillium wilt</td>
<td>high</td>
<td>low</td>
</tr>
</tbody>
</table>

— = none
1. Have you eliminated possible atrazine or other herbicide carry-over?
2. Does red clover or trefoil grow well in the site?
3. Did you plant a variety with a high level of resistance to Phytophthora and was it treated with mefenoxam (Apron) fungicide?

Soils may be tested for Aphanomyces potential through your county Extension agent or by the Plant Disease Diagnostic Clinic (PDDC), Room 183, Russell Labs, University of Wisconsin-Madison, Madison, WI 53706.

There are two types of tests offered by the PDDC. One is a non-specific soil analysis for Aphanomyces, Pythium, or Phytophthora that costs $35 per sample. The second is a race-specific bioassay for Aphanomyces that costs $150 per sample. Tests may take from 2-4 weeks to complete. Contact the PDDC (608-262-2863) for specific information about the desired sample amount to conduct either test.

Alfalfa varieties are available with combined resistance to Aphanomyces and Phytophthora root rots. Consult Extension publication Forage Variety Update for Wisconsin (A1525) at learningstore.uwex.edu

Currently, there are several varieties that are resistant to race 2 of Aphanomyces, in addition to race 1 resistance. Use results from soil tests to select the variety with the most appropriate resistance for your field conditions.

Several new seed treatments are being evaluated in Wisconsin for the management of Aphanomyces. Limited research results indicate these seed treatments have some activity against the water mold. See table 4-11 for more information.

General root and crown rot

A general root and crown rot is caused by a complex of fungi that persist in the soil; infection results

Table 4-11. Seed treatment fungicides for alfalfa diseases

<table>
<thead>
<tr>
<th>Fungicide(s)</th>
<th>Aphanomyces root rot</th>
<th>Downy mildew</th>
<th>Fusarium seed and seedling disease</th>
<th>Phytophthora seed and root rot</th>
<th>Pythium seed and root rot</th>
<th>Rhizoctonia seed rot and damping off</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)a</th>
<th>Amount/100 lb seed</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apron XL</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>mefenoxam</td>
<td>4</td>
<td>0.64 fl oz</td>
<td>For seedling damping-off and early season decay caused by Pythium and Phytophthora. Also provides suppression of early season seedling-borne downy mildew.</td>
</tr>
<tr>
<td>Dyna-shield</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>metalaxyl</td>
<td>4</td>
<td>0.75–1.5 fl oz</td>
<td>For seedling damping-off and early season decay caused by Pythium and Phytophthora.</td>
</tr>
<tr>
<td>Metastar ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>tolclofos-methyl</td>
<td>14</td>
<td>0.3 fl oz</td>
<td>For protection against seed and seedling decay caused by various soilborne fungi and oomycetes. May provide suppression against Aphanomyces root rot. Do not apply more than 200 lb of seed treated with Rizolex per acre.</td>
</tr>
<tr>
<td>Rizolex</td>
<td>3</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>pyraclostrobin</td>
<td>11</td>
<td>1.5–3.1 fl oz</td>
<td>For protection against seed and seedling decay caused by various soilborne fungi and oomycetes. May provide suppression against Aphanomyces root rot.</td>
</tr>
<tr>
<td>Stamina</td>
<td>4</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>5</td>
<td>pyraclostrobin</td>
<td>11</td>
<td>1.5–3.1 fl oz</td>
<td>For protection against seed and seedling decay caused by various soilborne fungi and oomycetes. May provide suppression against Aphanomyces root rot.</td>
</tr>
</tbody>
</table>

Efficacy ratings: 10 = excellent; 8 = very good; 6 = good; 4 = fair; 2 = poor; 0 = no control

Key: x = labeled, no data; - = not labeled

a FRAC codes indicate the modes of action for each fungicide; multiple applications of fungicides from the same group increases the chances for the fungus developing resistance.
Red clover diseases

Red clover, like alfalfa, has diseases that attack leaves, stems, and roots, reducing yield, quality, and stand life. The prevalent leaf and stem diseases can be controlled by planting resistant or tolerant varieties. Cutting the crop at late bud or early bloom also can help minimize leaf and stem diseases. Root rots of red clover cause depletions of stands. Stand decline can be reduced by planting varieties with good winter hardiness and maintaining high soil fertility (especially potassium).

Crown and root rots

Crown and root rots can cause serious stand decline in red clover. Several soil fungi can be the cause of this problem. Infected plants often are stunted or wilted. The roots of these plants are rotted (dark brown-black) on the outside and in the central core of the plants. The disease is most damaging when the rot progresses into the crown. Infected plants are prone to winterkill. Winter injury in turn can lead to severe root and crown rot. Varieties such as Arlington or Marathon that have good resistance to northern anthracnose and powdery mildew are strongly recommended. Such resistance also increases winter survival, making them better able to combat the effects of root and crown rot. Root and crown rot also can be reduced by maintaining good soil fertility (especially potassium).

Northern anthracnose

Northern anthracnose can reduce yields and quality of red clover in stands of all ages. Resistant varieties are available.

Powdery mildew

Powdery mildew forms a white powdery mass of mold on the upper surface of the leaves. Most newer varieties are resistant to powdery mildew.

Viruses

Viruses in red clover are recognized by a green-and-yellow mosaic pattern that develops on leaves. Viral symptoms can be confused with symptoms of nutrient deficiencies. Red clover varieties differ in reaction to bean yellow mosaic virus. Reaction to other viruses is not known.

Diseases of forage grasses

Common diseases of forage grasses are leaf rust, stem rust, leaf spot, and root rot. Rusts are recognized by round, bright orange pustules that rupture the leaf tissues (leaf rust) or oblong, reddish-brown pustules that rupture stem tissues (stem rust). Leaf spot diseases differ from the rusts in that they do not rupture the plant tissues. Most leaf spots are characterized by brown-to-black spots that are bordered by a yellow halo. Root rot diseases differ from the rusts in that they do not rupture the plant tissues. Most leaf spots are characterized by brown-to-black spots that are bordered by a yellow halo. Root rots cause brown-to-black roots that are reduced in number and size. A disease called ergot can develop in the heads of forage grasses. Long, hard, black fungal structures are scattered in the heads and replace the grain where they form. These ergot bodies can cause health problems if consumed by livestock.
SMALL GRAINS
PEST MANAGEMENT
Small grains weed management

A sound weed management program often uses supplementary mechanical weeding to maximize the effectiveness of an herbicide treatment. However, small grains are sown in narrow rows, making cultivation after planting impossible. Consequently, cultural practices such as crop rotation, adapted varieties, adequate fertilization, crop competition, and clean seed will maximize weed control. Fewer herbicide alternatives are available for weed control in small grains than for most other crops (see table 5-1). Therefore, the small grain producer must use all possibilities in an integrated approach for effective weed management.

Fall-seeded small grains are very competitive with weeds. Winter wheat, for example, seldom needs an herbicide treatment. The exception is with winter annual weeds like shepherd’s purse and pennycress that emerge with wheat in the fall. Check fields regularly after seeding and be ready to treat if and when needed.

Many producers apply nitrogen to winter wheat and often ask about using liquid fertilizer as the carrier to simultaneously apply the herbicide. This “weed and feed” approach would save a trip over the field but has two serious limitations. First, nitrogen is most effective when applied early in the spring, often before green-up, while most herbicides are applied between Feekes stages 4 and 8. Postponing the fertilizer application creates a major delay that will reduce small grain yield. The other concern is that liquid fertilizers applied at these growth stages may result in leaf burn to the cereal, especially if applied under hot, humid conditions. This risk is particularly high for herbicides like Harmony SG that require a surfactant in the spray solution. Thus, we discourage applying herbicides in liquid fertilizer in small grains.

It’s important to measure the growth stage of cereals before using postemergence herbicides. Figure 5-1 shows this relationship using the Feekes scale, which gives a numerical value to 11 developmental stages.

For a summary of harvest and grazing intervals following herbicide use in small grains, refer to table 5-2.

Small grains with a legume seeding

Spring-seeded small grains often have alfalfa seeded with them. This greatly limits the use of herbicides. If weeds are abundant, harvesting the small grain as silage is an excellent practice because it kills weeds before they produce seeds, harvests weeds while they still have relatively good feed value, and greatly increases the likelihood of successfully establishing the legume. Interest in frost-seeding red clover into winter wheat is growing in Wisconsin. As with alfalfa seeded into oats, weeds are usually not an important factor after frost seeding, but in situations where broadleaf weeds are abundant, two herbicide options are available.

Buctril (bromoxynil)

<table>
<thead>
<tr>
<th>Rate:</th>
<th>1.0-1.5 pt/a (consult the label to determine rate for specific weed species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvants:</td>
<td>Do not add surfactants or other additives to the spray mixture.</td>
</tr>
<tr>
<td>Timing:</td>
<td>POST. Treat when small grains have several leaves and up to the boot stage, when alfalfa has at least 4 trifoliate leaves, and when weeds are small.</td>
</tr>
<tr>
<td>Remarks:</td>
<td>This product can be used in small grains alone or with an underseeding of alfalfa but not on red clover or any other legume. Buctril controls many broadleaf weeds that may occur in companion crop seedings, particularly shepherd’s purse, pennycress, wild mustard, and wild radish. Apply Buctril in at least 20 gal/a of water. Applications of Buctril to underseeded oats may result in serious alfalfa injury if the temperature on the day of application or in the 3 days after application exceeds 70°F. Temperatures above this limit will be more likely to cause serious injury if the relative humidities are high on the day of treatment.</td>
</tr>
</tbody>
</table>

MCPA

Rate:	Apply 0.33-0.5 pt/a of MCPA amine (forms containing 4 lb ae/gal). When using products containing other than 4 lb ae/gal, adjust rates accordingly to apply 0.17-0.25 lb ae/a.
Adjuvants:	Do not add surfactants or other additives to the spray mixture.
Timing:	POST. Treat when small grain is tillered and has four or more leaves before the jointing stage. The legume should be 2-3 inches tall.
Remarks:	Never use the ester formulations of MCPA in companion crop seedings as the legume will be killed. Legume stands of alfalfa; trefol; or red, alsike, white, or ladino clover are usually not severely injured at this rate or time of application. MCPA amine labels caution that the product should not be used unless some legume injury can be tolerated. Some brands of MCPA do not carry label directions for use on small grain undersown with a small seeded legume. Using brands without label directions for use is illegal. A well-developed small grain and weed canopy of leaves is necessary to provide a protective “umbrella” over the legume seedlings to minimize herbicide contact with the legume. Sometimes, under ideal growing conditions, legume seedlings grow almost as rapidly as the small grain and such a protective canopy never develops. Do not apply MCPA when legume seedlings are as tall or nearly as tall as the small grain or when the oat and weed canopy does not cover the alfalfa seedlings. Excessive exposure to the herbicide treatment will almost certainly result in severe legume damage. Use less than 6 gal/a of water and low pressure when applying MCPA to reduce risk of legume injury. Broadleaf weeds are more easily controlled as seedlings than when they begin to flower.

Remarks: This product can be used in small grains alone or with an underseeding of alfalfa but not on red clover or any other legume. Buctril controls many broadleaf weeds that may occur in companion crop seedings, particularly shepherd’s purse, pennycress, wild mustard, and wild radish. Apply Buctril in at least 20 gal/a of water. Applications of Buctril to underseeded oats may result in serious alfalfa injury if the temperature on the day of application or in the 3 days after application exceeds 70°F. Temperatures above this limit will be more likely to cause serious injury if the relative humidities are high on the day of treatment.
Choosing between Buctril and MCPA

The factors to consider in choosing between these two products are temperature and relative humidity at and after time of treatment, degree of protection to the legume by the small grain and weed canopy, the specific weed species present, and the growth stage of the alfalfa and cereal. For example, Buctril is most indicated when lambsquarters, smartweeds, or wild buckwheat are present, temperatures are 70°F or less, and alfalfa has four or more trifoliolate leaves. MCPA is the better choice if pigweed is the dominant weed, temperatures exceed 70°F, humidities are high, and the oats and weeds protect the alfalfa seedlings.

Figure 5-1. Herbicide application periods at various growth stages of small grains (Feekes scale)

<table>
<thead>
<tr>
<th>Affinity BroadSpec (wheat)</th>
<th>Harmony Extra & Harmony SG (wheat & barley)</th>
<th>Huskie (wheat & barley)</th>
<th>Buctril</th>
<th>Starane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affinity BroadSpec (oats)</td>
<td>Harmony Extra & Harmony (oats)</td>
<td>Orion</td>
<td>Stinger</td>
<td>Banvel/Clarity</td>
</tr>
<tr>
<td>MCPA, 2,4-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>10.1</th>
<th>10.5</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>one shoot</td>
<td>tillering begins</td>
<td>tillers formed</td>
<td>leaf sheaths lengthen</td>
<td>leaf sheaths strongly erect</td>
<td>first node of stem visible</td>
<td>second node of stem visible</td>
<td>last leaf just visible</td>
<td>ligule of last leaf just visible</td>
<td>in “boot”</td>
<td>head visible</td>
<td>flowering</td>
<td>ripening</td>
</tr>
</tbody>
</table>

---winter dormancy---

---jointing---

---boot---

Source: Adapted and used with permission from Michigan State University Extension publication *Weed Control Guide for Field Crops* (E-434)
Table 5-1. Crop registration, tolerance, and herbicide effectiveness on weeds commonly found in small grains

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Cereals registered</th>
<th>Mode of action group(^a)</th>
<th>Can be underseeded?</th>
<th>Cereal crop tolerance</th>
<th>Annual grass weeds</th>
<th>Common chickweed</th>
<th>Common ragweed</th>
<th>Giant ragweed</th>
<th>Lambsquarters</th>
<th>Pennycress</th>
<th>Pigweed</th>
<th>Pickly lettuce</th>
<th>Shepherd's purse</th>
<th>Smartweeds</th>
<th>Wild buckwheat</th>
<th>Wild mustard</th>
<th>Wild radish</th>
<th>Canada thistle</th>
<th>Field bindweed</th>
<th>Perennial sow thistle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D amine</td>
<td>all</td>
<td>4</td>
<td>no/yes(^b)</td>
<td>8</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Affinity BroadSpec</td>
<td>B,W</td>
<td>2</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Banvel/Clarity</td>
<td>B,O,W</td>
<td>4</td>
<td>no</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Buctril</td>
<td>all</td>
<td>6</td>
<td>A</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Callisto</td>
<td>0</td>
<td>27</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>—</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>—</td>
<td>5</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Harmony Extra</td>
<td>B,O,W</td>
<td>2</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>B,O,W</td>
<td>2</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Huskie</td>
<td>B,W</td>
<td>6, 27</td>
<td>no</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Huskie Complete</td>
<td>W</td>
<td>2, 27, 6</td>
<td>no</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MCPA amine</td>
<td>all</td>
<td>4</td>
<td>A, RC</td>
<td>8</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Orion</td>
<td>B,O,W</td>
<td>2, 4</td>
<td>no</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Starane</td>
<td>B,O,W</td>
<td>4</td>
<td>no</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>—</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Stinger</td>
<td>all</td>
<td>4</td>
<td>no</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Wolverine Advanced</td>
<td>B,W</td>
<td>1, 6, 27</td>
<td>no</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbreviations: A = alfalfa; B = barley; O = oats; RC = red clover; W = wheat

Efficacy ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

\(^a\) Weed Science Society of America-approved group numbers for the corresponding herbicide mode of action.

\(^b\) Some brands of 2,4-D amine allow application in underseeded small grains. We do not recommend it because the risk of legume injury is very high.
Small grains without a legume seeding

2,4-D

Rate: Apply 1.0 pt/a of 2,4-D amine or 0.67 pt/a of 2,4-D ester (forms containing 3.8 lb ae/gal) in wheat, rye, or barley. Apply 0.5-1.0 pt/a of 2,4-D amine or 0.5 pt/a of 2,4-D ester in oats.

Adjuvants: Do not add surfactants or other additives to the spray mixture. Nitrogen fertilizer may be used as the carrier instead of water.

Timing: POST. Treat when cereals are fully tillered (usually 4-8 inches tall) and before the jointing stage; never treat in the boot or dough stages.

Weeds: Treat when annual broadleaves are 4 inches or less in height.

Remarks: When using forms of these herbicides containing other than 3.8 lb ae/gal, adjust rates accordingly. Apply 2,4-D before the small grain reaches the jointing stage of development. Applications after jointing occasionally cause yield loss.

Note: Do not treat grains in the boot to dough stage because of the risk of severe yield loss. Susceptible broadleaf weeds are usually controlled by the lower rates, but less susceptible weeds require full dosage. Smartweed and pennycress are best controlled by 2,4-D ester, but amine is less likely to injure small grains. 2,4-D amines are usually water soluble liquids while 2,4-D esters are emulsifiable concentrates. 2,4-D is sold under various trade names and at various concentrations of acid equivalence. Be sure to read and follow the guidelines on the label for your brand of 2,4-D as there are often labeling differences between manufacturers. Wheat, barley, oats, and rye grain from fields treated with 2,4-D amine or ester may be used for any purpose.

Rotational restrictions: Corn may be planted 7-14 days after 2,4-D application; soybeans may be planted after 7-30 days; other crops can be planted after 3 months.

Affinity BroadSpec

Rate: Use 0.4-1.0 oz/a in wheat or barley; 0.4 oz/a in oats. Rates of 0.4-0.6 oz/a must be tank mixed with other herbicides.

Adjuvants: Add nonionic surfactant at 0.25% of spray solution. See label for surfactant rates when mixing other herbicides with Affinity BroadSpec. Ammonium sulfate at 2 lb/ba or 2 qt/a of nitrogen fertilizer may also be added.

Timing: POST. Apply from the 2-leaf stage, but before the flag leaf is visible in wheat and barley. Apply from the 3-leaf stage but before the jointing stage in oats.

Weeds: Treat annual weeds before they are 4 inches tall or wide. Treat 4- to 8-inch Canada thistle in the spring.

Remarks: Affinity BroadSpec is a premix of a 1:1 ratio of Harmony SG and Express, which provides a higher rate of Express than in Harmony Extra. Affinity BroadSpec controls many species of mustards, including wild mustard, shepherd’s purse, and pennycress, and also pigweed, lambsquarters, henbit, and smartweeds. Wild buckwheat should be controlled with a 0.8 oz/a rate. Common ragweed control is inconsistent and giant ragweed is not adequately controlled. To ensure adequate control of common ragweed, tank mix with 2,4-D. When treating Canada thistle, tank mix 0.8 oz/a with 2,4-D or dicamba. Buctril and Starane are also labeled for tank mixtures. 2,4-D is a likely partner as Affinity BroadSpec will improve wild buckwheat and smartweed control compared to 2,4-D alone. Affinity BroadSpec can be tank mixed with insecticides or fungicides. Apply in at least 5 gal/a of water with flat fan nozzle tips and in at least 10 gal/a with flood jet tips. Nitrogen fertilizer may be used as the carrier instead of water. Allow at least 45 days following application before harvest. Straw from treated small grains may be used for bedding or feed.

Rotational restrictions: Wheat and barley can be replanted any time after application, soybeans can be planted after 7 days, and corn can be planted after 14 days. Any other crop can be planted 45 days after an application of Affinity BroadSpec, except canola or beets, which require a 60-day interval.

Banvel/Clarity

See dicamba.

Buctril

Rate: Apply 1.0-1.5 pt/a

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Base timing on the stage of weed growth but do not treat small grains in or beyond the boot stage.

Weeds: Apply when weeds in winter wheat have no more than 8 leaves or when weeds in spring-seeded cereals have 4 leaves and when weeds in either seeding time are no more than 2 inches tall.

Remarks: Buctril controls many broadleaves commonly found in small grains, especially shepherd’s purse, pennycress, lambsquarters, wild radish, wild mustard, and yellow rocket seedlings.

This treatment only controls seedling weeds when spray coverage is thorough and uniform. It will not control perennial weeds like Canada thistle.

Apply Buctril with flat fan nozzles using at least 10 gal/a of water and 30 psi pressure.

Buctril can be applied to wheat, barley, rye, and oats and tank mixed with MCPA or 2,4-D for any of these cereals. It can be tank mixed with dicamba, Express, or Harmony Extra only for use in winter and spring wheat. Do not apply if crops are under stress or if the weeds are protected by a crop canopy. Treated areas cannot be grazed for 45 days.

Rotational restrictions: Corn can be planted any time after Buctril application. Other crops can be planted after 30 days.

Callisto

Rate: 6 fl oz/a preemergence or 3 fl oz/a postemergence

Adjuvants: For postemergence applications, add crop oil concentrate at 1% or nonionic surfactant at 0.25%. The addition of 28% nitrogen solution at 2.5% or ammonium sulfate at 8.5 lb/100 gal may increase weed control, but may also increase the risk of injury.

Timing: PRE. Apply after planting oats and before weed emergence.

POST. Apply to oats before weeds exceed 5 inches in height. Do not apply within 50 days of harvest.

Remarks: Callisto has a supplemental label allowing these applications. Callisto controls many annual broadleaf weeds and cannot be used on oats underseeded with alfalfa. A preemergence application should provide greater crop safety than postemergence applications. Tank mixing emulsifiable concentrate formulations of other pesticides with postemergence applications is not recommended because of the risk of injury. Only one Callisto application can be made per year.

Rotational restrictions: Small grains can be planted 120 days after application. Alfalfa, soybeans, potatoes, and tobacco can be planted after 10 months. Other crops cannot be planted until 18 months after treatment.

Dicamba

Rate: Apply 2-4 fl oz/a of either Banvel or Clarity in wheat or spring oats; 2-3 fl oz/a in spring barley.

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Apply to winter wheat in spring after winter dormancy and before joint stage or to spring-sown wheat or oats in the 2- to 5-leaf stage, and to spring-seeded barley in the 2- to 4-leaf stage.
Weeds. Treat when weeds are in the 2- to 3-leaf stage and rosettes are less than 2 inches across.

Remarks: Carefully monitor crop development and treat only at recommended growth stages. Later application may injure small grains and reduce yield. Dicamba controls many broadleaf weeds and is particularly effective on smartweed and wild buckwheat. This herbicide will also kill legumes—never use it on small grain undersown with a legume seeding. Since most of Wisconsin's small grain is grown with an undersown legume, use of dicamba or dicamba combinations in small grain (especially oats) will be very limited. Dicamba is weak on weeds in the mustard family and very effective on wild buckwheat and smartweed. Dicamba can be tank mixed with 2,4-D, MCPA, Buctril, Express, or Harmony Extra in winter wheat and winter barley to broaden the spectrum of weeds controlled. In spring-seeded barley, Buctril, Express, Harmony Extra, or MCPA can be tank mixed with dicamba; in spring-seeded oats, only MCPA can be tank mixed with dicamba. Oats are more tolerant to dicamba than wheat and barley. Do not treat barley unless some injury is acceptable. Crop staging and proper application timing are critical to avoid injuring small grains with dicamba. Do not use even low rates of dicamba after the small grain has developed beyond the recommended growth stage. Be particularly cautious with early developing wheat varieties like Madison and Wakefield.

Rotational restrictions: Corn can be planted any time after dicamba application. Other crops can be planted after harvest.

Harmony Extra SG

Harmony Extra SG + Express premix

Rate: Use 0.45-0.9 oz/a in wheat and barley; 0.45-0.6 oz/a in oats. (Rates of new Harmony Extra SG are 50% higher than the original Harmony Extra.)

Adjuvants: Add a nonionic surfactant at 0.25% of spray solution. Ammonium sulfate at 2 lb/a or 2 qt/a of nitrogen fertilizer may also be added. See label for surfactant rates when mixing other herbicides with Harmony Extra.

Timing: POST. Apply Harmony Extra to wheat or barley with 2 leaves but before the flag leaf is visible. Treat oats after the crop has 3 leaves but before the jointing stage.

Weeds. Treat annual weeds after emergence and before they are 4 inches tall or wide; treat 4- to 8-inch Canada thistle in the spring.

Remarks: Harmony Extra, a premix of Harmony SG and Express, controls many species of mustards, including wild mustard, shepherd's purse, pennycress, and wild radish, and also pigweed, lambsquarters, henbit, kochia, and smartweed. Common ragweed control is inconsistent and giant ragweed is not adequately controlled. To ensure adequate control of wild radish or common ragweed, mix Buctril, MCPA, or 2,4-D with Harmony Extra. When treating Canada thistle, mix 2,4-D with Harmony Extra. If appropriate, dicamba can also be tank mixed with Harmony Extra. Do not apply more than 0.6 oz/a of Harmony Extra to oats, nor more than 0.9 oz/a to wheat and barley. Small grain varieties vary in tolerance to Harmony Extra. Do not use this product in the oat varieties Ogle, Porter, or Premier.

Rotational restrictions: Wheat, barley, oats, and field corn may be planted any time after applying Harmony Extra. Any other crop may be planted 45 days after application.

Harmony SG

Rate: Use 0.45-0.9 oz/a in wheat and barley; 0.45-0.6 oz/a in oats

Adjuvants: Add a nonionic surfactant at 0.25-0.5% of spray solution. Ammonium sulfate at 2 lb/a or 2 qt/a of nitrogen fertilizer may also be added. See the label for surfactant rates when tank mixing with other herbicides.

Timing: POST. Apply Harmony after wheat or barley is in the 2-leaf stage but before the flag leaf is visible; treat oats when the crop is in the 3-leaf stage before jointing.

Weeds. Treat when broadleaf weeds are 1-4 inches tall.

Remarks: Harmony controls several common annual broadleaves in winter wheat, barley, and oats. These include most weeds in the mustard family, pigweed, lambsquarters, chickweeds, smartweeds, mayweed, pineappleweed, and annual sowthistle. If mixed with other herbicides, it controls prickly lettuce and wild radish. Harmony can be tank mixed with 2,4-D, dicamba, or Buctril to broaden the spectrum of weeds controlled. Small grain varieties vary in sensitivity to Harmony; do not use this product on the oat varieties Ogle, Porter, or Premier. Harmony SG may be tank mixed with insecticides or fungicides. Do not apply Harmony when the cereals are under environmental stress.

Apply Harmony in 10-25 gal/a of water. Nitrogen fertilizer may be used as the carrier instead of water. Straw from treated small grains may be used for bedding or feed.

Rotational restrictions: Wheat, barley, oats, and field corn may be planted any time after applying Harmony. Any other crop may be planted 45 days after application.

Huskie

pyrasulfotole + buctril + safener premix

Rate: 11-15 fl oz/a (11 fl oz/a is the standard rate)

Adjuvants: Add 0.5-1 lb/a ammonium sulfate or 1-2 qt/a of 28% nitrogen solution. Nonionic surfactant at 0.25% may be added if required by a tank-mix partner.

Timing: POST. Apply from 1-leaf stage up to flag leaf emergence.

Weeds. Treat actively growing weeds before they have more than 4-6 leaves or are more than 4 inches in diameter.

Remarks: Huskie controls many annual broadleaf weeds and will suppress some perennial broadleaf weeds in wheat and barley. If needed, Huskie can be tank mixed with other small grain herbicides. Apply Huskie in 10 gal/a of water or more to achieve thorough spray coverage as these ingredients primarily have contact activity. Nitrogen fertilizer may be used as the carrier instead of water when winter wheat is treated. Huskie is rainfast in 1 hour. Do not graze or harvest forage for 25 days after application or harvest grain for 60 days after application.

Rotational restrictions: Small grains can be replanted 7 days after application; soybeans after 4 months; and alfalfa, dry beans, corn, and potato after 9 months. A field bioassay is required before planting crops not listed on the label.

Huskie Complete

thienobenzuron + pyrasulfotole + bromoxynil + safener premix

Rate: 13.7 fl oz/a

Adjuvants: Add 0.5-1 lb/a ammonium sulfate or 1-2 pt/a of 28% nitrogen solution. Nonionic surfactant at 0.25% may be added if required by a tank-mix partner.

Timing: POST. Apply from 1-leaf stage up to 70 days prior to harvest.

Weeds. Treat actively growing weeds before grass weeds have their second tiller and when broadleaf weeds have between 1-6 leaves.

Remarks: Controls most annual grass and broadleaf weeds in wheat. If needed, it can be tank mixed with Express, MCP Ester, or Olympus. Check the label for additional restrictions.
Rotational restrictions: Wheat can be replanted three months after application but others are nine months (corn, peas, soybeans, alfalfa). Some are even eighteen months (see label). Where a crop is not specified on the label, a field bioassay is required before planting crops.

MCPA

Rate: Apply 0.5-1.0 pt/a of MCPA amine or MCPA ester (formulations containing 4 lb ae/gal).

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Apply in spring after grain has four leaves and before jointing stage. Do not apply in boot to dough stage.

Remarks: Apply MCPA when small grain is fully tillered (usually 4-8 inches tall). The risk of crop injury increases as the rate increases. Apply MCPA with a minimum of 10 gal/a of water. MCPA amine is soluble in water while MCPA ester is an emulsifiable concentrate. MCPA is sold under various trade names and at various concentrations of acid equivalence. Be sure to read and follow the guidelines on the label for your brand of MCPA as there are often labeling differences between manufacturers. Wheat, barley, oats, and rye grain from fields treated with MCPA may be used for any purpose.

Rotational restrictions: The label gives no information on planting rotational crops.

Orion

florasulam + MCPA premix

Rate: 17 fl oz/a

Adjuvants: The addition of 0.2% nonionic surfactant is suggested.

Timing: POST. Apply from 3-leaf stage up to jointing. Applications from jointing until boot stage may cause injury.

Weeds. Treat actively growing weeds when 1-4 inches tall.

Remarks: Orion is labeled to control many mustards such as shepherd’s purse, field pennycress, and wild mustard as well as common chickweed, lambsquarters, pigweed, common ragweed, wild buckwheat, and bedstraw. Apply in 8 or more gal/a water. Orion is rainfast in 4 hours. Treated small grains can be grazed in 7 days.

Rotational restrictions: Small grains can be planted 14 days after application; corn can be planted after 3 months; alfalfa, dry beans, potatoes, and soybeans can be planted after 9 months; all other crops can be planted after 12 months.

Starane

fluroxypyr

Rate: 0.67 pt/a

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Apply Starane to actively growing wheat, oats, or barley from the 2-leaf growth stage up to and including flag leaf emergence. Treat at least 40 days before harvest.

Weeds. Treat actively growing annual weeds before they exceed 8 inches in height; treat hemp dogbane when it is 12-18 inches tall.

Remarks: Starane controls several broadleaf weeds in wheat, oats, and barley. Susceptible species include hemp dogbane, chickweed, kochia, common ragweed, and bedstraw. Starane is particularly effective on hemp dogbane; fields with this weed could be rotated to wheat and treated with Starane to reduce the infestation. This product also suppresses pennycress, mustard, wild buckwheat, and field bindweed. Up to 1.33 pt/a of Starane could be applied to these latter weeds but it is probably better to tank mix Starane with other broadleaf herbicides to improve and broaden the spectrum of control to include additional weeds. Control will be reduced if weed foliage is wet at the time of application. Never use Starane in fields underseeded with legumes as they would be killed. Starane is available as an emulsifiable concentrate with 1.5 lb ae fluroxypyr/gal.

Rotational restrictions: Only wheat, barley, and oats can be replanted sooner than 120 days after application. All other crops can be planted after 120 days.

Stinger

clopyralid

Rate: 0.25-0.33 pt/a

Adjuvants: Do not add surfactants or other additives to the spray mixture.

Timing: POST. Apply Stinger to wheat, barley, or oats after the 3-leaf but before the boot stage.

Weeds. Treat Canada thistle in the rosette to early bud stage and annual broadleaves with 2-5 leaves.

Remarks: Stinger controls several broadleaf weeds in wheat, barley, and oats. It is weak on smartweed and does not control weeds in the mustard family or lambsquarters. Stinger is labeled for several weeds in the composite family, including giant and common ragweed and Canada thistle. For Canada thistles, use 0.33 pt/a and treat as the cereal reaches the early boot stage. Never use Stinger in fields underseeded with legumes. Weeds should be actively growing when treated; do not add a surfactant or crop oil to the spray solution. Do not use in fields that will be summer seeded to alfalfa. Also avoid using in areas where the groundwater is vulnerable to contamination due to very permeable soils and/or a very shallow water table. Stinger can be tank mixed with Buctril, dicamba, MCPA, or 2,4-D.

Rotational restrictions: Small grains can be replanted one month after application; corn, peas, soybeans, and alfalfa after four months; and corn, potatoes, and peas after nine months. Read label for directions for planting alfalfa to ensure within compliance. Where a crop is not specified on the label a field bioassay is required before planting.

Wolverine Advanced

fenoxaprop-pyrasulfotole + bromoxynil + safener premix

Rate: 1.7 fl oz/a

Adjuvants: Add 0.5-1 lb ammonium sulfate or 1-2 pt/a of 28% nitrogen solution.

Timing: POST. Apply from 1-leaf stage up to 70 days prior to harvest.

Weeds. Treat actively growing weeds before grass weeds have their second tiller and when broadleaf weeds are between 1-6 leaves.

Remarks: Controls most annual grass and broadleaf weeds in wheat.

Rotational restrictions: Small grains can be replanted one month after application; corn, peas, soybeans and alfalfa, sorghum and soybeans after four months; and corn, potatoes, and peas after nine months. Read label for directions for planting alfalfa to ensure within compliance. Where a crop is not specified on the label a field bioassay is required before planting.
Table 5-2. Harvest and/or grazing restrictions for herbicides registered for use in small grains

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Use(s)</th>
<th>Animal type</th>
<th>Interval between application and grazing or harvest</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>small grains</td>
<td>all</td>
<td>2-week grazing restriction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>small grains, preharvest</td>
<td>all</td>
<td>7 days before harvest</td>
<td>Do not feed straw to livestock.</td>
</tr>
<tr>
<td>Affinity BroadSpec</td>
<td>wheat, barley</td>
<td>all</td>
<td>7 days for grazing or forage; 45 days before harvest</td>
<td>Allow 30 days between application and hay harvest.</td>
</tr>
<tr>
<td>Buctril</td>
<td>small grains</td>
<td>all</td>
<td>45 days</td>
<td>Do not harvest summer-seeded alfalfa treated with Buctril until following spring.</td>
</tr>
<tr>
<td>Callisto</td>
<td>oats</td>
<td>all</td>
<td>30 days for grazing or forage; 50 days before harvest</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>small grains</td>
<td>non-lactating, lactating</td>
<td>0 days</td>
<td>Do not harvest hay within 37 days after treatment.</td>
</tr>
<tr>
<td>Harmony Extra</td>
<td>wheat, barley</td>
<td>all</td>
<td>7 days for grazing or forage; 45 days before harvests</td>
<td>Allow 30 days between application and hay harvest.</td>
</tr>
<tr>
<td>Harmony SG</td>
<td>wheat, barley</td>
<td>all</td>
<td>7 days for grazing or forage; 45 days before harvest</td>
<td>Allow 30 days between application and hay harvest.</td>
</tr>
<tr>
<td>Huskie</td>
<td>wheat, barley</td>
<td>all</td>
<td>25 days for grazing or forage; 60 days for grain or straw</td>
<td></td>
</tr>
<tr>
<td>Huskie Complete</td>
<td>wheat</td>
<td>all</td>
<td>25 days for grazing; 30 days for hay; 70 days for grain or straw</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>small grains</td>
<td>all</td>
<td>—</td>
<td>Do not allow livestock to graze treated fields within 7 days of slaughter.</td>
</tr>
<tr>
<td>Orion</td>
<td>small grains</td>
<td>all</td>
<td>7 days for grazing; 60 days before harvest</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMAX²</td>
<td>wheat, barley</td>
<td>—</td>
<td>7 days</td>
<td>Apply only when grain is in hard dough stage (30% moisture or less).</td>
</tr>
<tr>
<td>Starane</td>
<td>small grains</td>
<td>all</td>
<td>7 days for grazing; 40 days before harvest</td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>small grains</td>
<td>all</td>
<td>7 days</td>
<td>Do not harvest hay from treated grain fields.</td>
</tr>
<tr>
<td>Wolverine Advanced</td>
<td>wheat, barley</td>
<td>all</td>
<td>Barley: 25 days for grazing or forage; 57 days for grain or straw Wheat: 25 days for grazing or forage; 70 days for grain or straw</td>
<td></td>
</tr>
</tbody>
</table>

*Labels may have changed after this table was prepared. Consult current labels to verify the information.

²These are the restrictions on the Roundup and Touchdown labels and several other glyphosate products. Differences exist on some brands of glyphosate. Verify what restrictions apply to your brand before using it.
Small grains insect management

Insecticides suggested in this section are intended as a guide to assist you in selecting chemical insect control options during the season. This book provides an overview of product registrations for specific field crop insect pests; it is not intended as an exhaustive insecticide label source. Product inclusion or omission does not imply endorsement by University of Wisconsin-Extension. Remember, certain insecticides are produced by different manufacturers and directions for use, rate, and method of application may vary by formulation. Therefore, always read the insecticide label completely before using the material.

Insecticides are often interchangeably referred to by their common names and trade names. Trade names such as Warrior II are capitalized, while common chemical names—lambda-cyhalothrin in this example—are not.

A number of the products listed in this section are restricted-use insecticides. We discuss restricted-use pesticides in the beginning of this publication. Refer to appendix table 1b for a list of insecticides that currently require certification to be applied. It is possible that additional insecticides will be classified before the next growing season. Contact your county Extension agent for additional information on insecticide restriction.

Insect pests of small grains

Aphids

Aphids (primarily greenbug, bird cherry-oat, corn leaf, and English grain aphid) damage plants indirectly by transmitting barley yellow dwarf virus (BYDV) and directly by sucking the sap. Light or heavy infestations of these small (less than 1/8 inch), green, soft-bodied insects may result in severe red-leaf damage of oats, but only heavy infestations cause yellowing and eventual browning. Once the red-leaf damage or yellowing is noticeable, it is usually too late to spray.

These aphids can also infect winter wheat in the fall. Winged, virus-infected aphids fly to the fields and then transmit the virus to the seedlings as they feed on them. The extent of BYDV infection of Wisconsin’s winter wheat is related to the number of aphids present during the summer, the percent of the aphid population that carry the virus, and planting date of wheat. The degree of infection and subsequent winterkill, and yield reduction can be very high in fields planted during August if the numbers of infected aphids are high. Delaying planting until September 15th will avoid peak fall aphid flights.

Aphids injure small grains by sucking plant sap from leaves, stems, and/or heads and can cause direct yield loss under heavy infestations. When scouting for aphids in winter wheat, take several counts throughout the field prior to heading. Examine 20 stems in each of five areas of the field (100 stems per field). For aphid treatment guidelines in winter wheat and small grains, refer to table 5-3.

Insecticide seed treatments are labeled for early-season control of aphids (including bird cherry-oat, English grain, greenbug, and Russian wheat aphids) and to reduce the potential spread of BYDV. Gaucho XT (3.4 fl oz/hundredweight or cwt of seed) and Gaucho 600 are labeled for wheat, oats, rye, and barley. CruiserMaxx Cereals and Cruiser SFS are labeled for wheat, barley, and triticale. Do not graze or feed livestock on treated areas for 45 days after planting. Treated seed may be obtained from seed dealers and/or seed treatment service providers.

Armyworms

Armyworms can severely damage small grain fields. Larvae, resulting from moth flights in late June and early July, cause the problems. In July, these worms strip leaves and frequently clip off kernels and the head as the crop approaches maturity. By day, they hide on the soil surface and beneath clods. Detecting young larvae requires careful searching.

To guard against severe losses, check several areas of each field carefully. Check thick lodged areas first because armyworms will often be most numerous here. If you do not find worms in these areas, the odds are good that there are no problems in the rest of the field. However, check the field again in several days. If you find armyworms in the lodged areas, check several areas in the rest of

<table>
<thead>
<tr>
<th>Table 5-3. Treatment thresholds for aphids to prevent direct plant damage (not disease reduction) and subsequent grain yield loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth stage</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Seedling</td>
</tr>
<tr>
<td>Boot to heading</td>
</tr>
</tbody>
</table>
the field. Treatment is suggested if populations average three or more per square foot.

Grasshoppers

Occasionally, grasshoppers are abundant enough to concern farmers. Insecticide use is not suggested until populations reach 20 per square yard in field margins or 8 per square yard in small grain fields. Apply treatments while grasshoppers are still small.

Wireworms

Wireworms are small (less than 1-½ inches long), copper-colored larvae that attack underground stems and kill plants in irregular areas in oat fields. They are a problem mainly on the loamy soils of central Wisconsin.

Insecticide seed treatments are labeled for early-season suppression and/or control of wireworm in small grains. Gauch® XT and Gauch® 600 are labeled for wheat, oats, rye (Gauch® 600 only), and barley. CruiserMaxx Cereals and Cruiser SFS are labeled for wheat, barley, and triticale. NipsIt SUITE Cereals is labeled for barley, oats, and wheat. Consult labels for feeding and grazing restrictions. Treated seed may be obtained from seed dealers and/or seed treatment service providers.

Insecticide suggestions for small grain pests

All insecticides listed in this section are to be applied to the plant foliage. Do not allow sprays to drift into beeyards or onto adjacent blooming crops or weeds.

Aphids and grasshoppers

Aphid thresholds:

- Seedling: 30 aphids/stem (English grain aphid or oat-bird cherry aphid); 20 aphids/stem (greenbug).
- Boot to heading: 50 aphids/stem (English grain aphid or oat-bird cherry oat aphid); 30 aphids/stem (greenbug).
- Grasshopper threshold: 20 adults and nymphs/sq yd in field margins or 8/sq yd in small grain fields.

Baythroid XL

Active ingredient: cyfluthrin

Rate: 1.8-2.4 fl oz

Preharvest interval (days): 30

Maximum rate: 4.8 fl oz (0.038 lb ai)/a/season

Comments: Use the higher rate range and increased water volume after plant damage has taken place or following booting for better coverage. Once damage occurs or plant growth stage reaches booting, control may be limited to suppression only.

Besiege

Active ingredient: lambda-cyhalothrin, chlorantraniliprole

Rate: 6.0-10.0 fl oz

Preharvest interval (days): 30

Maximum rate: Do not apply more than 18.0 fl oz of Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year.

Cruiser SFS

Active ingredient: thiamethoxam

Rate: 4A

Preharvest interval (days): 30

Maximum rate: 14

Dimethoate

Rate: See label (rate varies by formulation)

Active ingredient: dimethoate

Preharvest interval (days): Consult label

Maximum rate: May vary by label

Precautions: Labeled for control of greenbug aphids and grasshoppers in wheat only.

Declare

Rate: 1.02-1.54 fl oz

Active ingredient: gamma-cyhalothrin

Preharvest interval (days): 30

Maximum rate: 0.03 lb ai (0.19 pt)/a/season

Comments: Best control obtained before aphids begin to roll leaves. Once wheat has started to boot, may provide suppression only. Higher rates and coverage will be necessary.

Precautions: Do not allow livestock to graze treated areas or harvest treated wheat forage as feed for meat or dairy animals within 7 days after last treatment. Do not feed treated straw to meat or dairy animals within 30 days after the last treatment.

Fastac EC

Rate: 1.8-3.8 fl oz

Active ingredient: alpha-cypermethrin

Preharvest interval (days): 14

Maximum rate: 11.4 fl oz (0.075 lb ai)/a/season

Cruiser Maxx Cereals

Active ingredient: thiamethoxam

IRAC code: 4A

Comments: For protection against aphids, an additional amount must be mixed with appropriate quantities of water to apply to 100 lb seed.

Precautions: Do not make any soil or foliar application of products containing thiamethoxam to small grain crops grown from seed treated with Cruiser SFS (thiamethoxam).

Note: For use in commercial seed treaters only or certified retail treatment locations. Packaged with compatible and registered fungicide seed treatments.

Precautions: Do not apply any soil or foliar application of products containing thiamethoxam to small grain crops grown from seed treated with Cruiser SFS (thiamethoxam).
Comment: Control may be variable depending on species present and host-plant relationships.
Note: Registered for wheat and triticale

Fastac SC

Rate: 1.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 14
Maximum rate: 11.4 fl oz (0.075 lb ai)/a/season
Comment: Control may be variable depending on species present and host-plant relationships.
Note: Registered for wheat and triticale

Baythroid XL

Rate: 1.8-2.4 fl oz
Active ingredient: cyfluthrin
IRAC code: 3A
Preharvest interval (days): 30 days for grain, forage, and hay
Maximum rate: 20 fl oz (0.125 lb ai)/a/season
Comment: Aphid control may be variable depending on species present and host-plant relationships.

Besiege

Rate: 6.0-10.0 fl oz
Active ingredient: lambda-cyhalothrin, chlorantraniliprole
IRAC code: 3A, 28
Preharvest interval (days): 30
Maximum rate: Do not apply more than 18.0 fl oz of Besiege or 0.06 lb ai of lambda-cyhalothrin-containing products or 0.2 lb ai of chlorantraniliprole-containing products/a/year.
Comment: Apply to first and second instars.

Armyworm

Threshold: Three larvae/sq ft
Comment: Best control obtained before aphids begin to roll leaves. Once wheat has started to boot, may provide suppression only. Higher rates and coverage will be necessary.
Precaution: Do not allow livestock to graze in treated areas or harvest treated wheat forage as feed for meat or dairy animals within 7 days of treatment.

Declare

Active ingredient: gamma-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: 0.03 lb ai (0.19 pt)/a/season
Comments: Labeled for wheat only. Do not apply more than 0.03 lb ai (0.19 pt)/a/season. Do not apply within 30 days of harvest.
Precaution: Do not allow livestock to graze treated areas or harvest treated wheat forage as feed for meat or dairy animals within 7 days after last treatment.
Comment: Do not feed treated straw to meat or dairy animals within 30 days after last treatment.

Tracer

Rate: 1.5-3.0 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 21 days for grain or straw; 3 days for forage, fodder, or hay
Maximum rate: 9 fl oz (0.28 lb ai)/a/season
Precautions: Do not allow cattle to graze treated area until spray has dried.

Warrior II

Rate: 1.28-1.92 oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30 days for grain.
Maximum rate: 0.06 lb ai (3.84 fl oz or 0.24 pt)/a/season
Precaution: Do not allow livestock to graze in treated areas or harvest treated wheat forage as feed for meat or dairy animals within 7 days after last treatment.
Comment: Do not feed treated straw to meat or dairy animals within 30 days after the last treatment.

Silencer

Rate: 2.56-3.2 fl oz
Active ingredient: lambda-cyhalothrin
IRAC code: 3A
Preharvest interval (days): 30
Maximum rate: Do not apply more than 0.06 lb ai (0.48 pt)/a/season.
Precaution: Do not allow livestock to graze in treated areas or harvested treated wheat forage as feed for meat or dairy animals within 7 days. Do not feed treated straw to meat or dairy animals within 30 days after last treatment.

Fastac SC

Rate: 1.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 14
Maximum rate: 11.4 fl oz (0.075 lb ai)/a/season
Comment: Registered for wheat and triticale.

Gaucho 600

Active ingredient: imidacloprid
IRAC code: 4A
Comment: For early season protection of seedlings against injury by aphids.
Precautions: Do not graze or feed livestock on treated areas for 45 days after planting.

Fastac EC

Rate: 1.8-3.8 fl oz
Active ingredient: alpha-cypermethrin
IRAC code: 3A
Preharvest interval (days): 14
Maximum rate: 11.4 fl oz (0.075 lb ai)/a/season
Comment: Registered for wheat and triticale.
Small grains disease management

Many disease-causing organisms attack small grains in Wisconsin. Any approach to plant disease control requires identification and knowledge of the cause and its life cycle, the effect of environment on disease development, and the potential control measures available. Economic and environmental factors often determine the control procedures employed for these various diseases. Control strategies can be an integration of the following methods: planting resistant or tolerant varieties, proper crop management, and agricultural chemicals (mostly fungicides).

Variety selection is key to disease management in small grains. Refer to Extension publications Wisconsin Oats and Barley Performance Tests (A3874) and Wisconsin Winter Wheat Performance Tests (A3868) at learningstore.uwex.edu for specific disease-resistance ratings. These publications are updated each year with new test data for each variety.

Small grain diseases

Barley yellow dwarf (red leaf)

Wheat Barley yellow dwarf or barley and oat red leaf are caused by the same virus—barley yellow dwarf virus (BYDV). Infected wheat or barley plants show yellowed foliage, stunted plants, and underdeveloped heads. Infected oat plants also are stunted and have underdeveloped heads, but the foliage becomes red with slight yellowing—thus, the common name red leaf.

 Aphids transmit the barley yellow dwarf virus. The virus overwinters in wild grasses and winter wheat; however, inoculum carried in from southern states by aphids appears to be more critical in disease development. Volunteer oat and virus-carrying aphids serve as inoculum for infection of winter wheat in the fall. Corn is another source of inoculum of BYDV.

To control red leaf, choose resistant varieties of oat. Most wheat varieties are susceptible. Plant oat, barley, and spring wheat early to avoid high populations of virus-laden aphids. Delay planting of winter wheat to avoid high aphid populations in the fall. Generally, winter wheat planted after mid-September is less affected by BYDV. Encourage good vegetative growth by seeding at appropriate rates and by using fertility management techniques.

Ergot

Ergot is an important disease in rye, triticale, wheat, and barley, but it is rare in oats. Some of the grain in an infected head is replaced with a long, purple-black, horn-like fungus structure that may reach 1 inch in length. Ergot causes little or no yield loss, but it is toxic if fed to livestock. All varieties of rye are susceptible. Information is not available on barley and wheat varieties.

Leaf, stripe, and stem rust

Leaf, stripe, and stem rust occur on all small grains grown in Wisconsin. Disease severity differs each year depending on weather conditions, varieties of small grains grown, and prevalent strain(s) of the rust fungi present. Small grain yields can be greatly reduced as a result of severe rust development, especially if infection happens prior to head emergence.

There are several possible ways to control or reduce rust in small grains. In most years, early planting effectively controls stem rust of oat, and stem rust and leaf rust of spring wheat. Stem rust fungi do not overwinter in Wisconsin, and inoculum must be introduced from states south of Wisconsin. The wheat leaf rust fungus can overwinter on winter wheat if the crop does not freeze, although this situation rarely occurs.

Oat leaf rust (crown rust) survives on buckthorn bushes, which serve as a source of inoculum each spring. Thus, early planting has less of an impact on leaf rust development on oat. Destruction of buckthorn bushes in the vicinity of oat fields can suppress oat leaf rust.

Rust diseases of small grains can be controlled effectively by planting rust-resistant varieties. However, new races of the rust fungi frequently develop and infect varieties that were formerly resistant. Beware of rust development in varieties rated as resistant.

Foliar-applied fungicides are registered for rust control in small grains (table 5-4). See product label for registered crops, rates, and timing of applications.

Powdery mildew

Powdery mildew is caused by the fungus Blumeria graminis. White to light gray, powdery patches form on the leaves, sheaths, stems, and floral bracts. Black specks (cleistothecia) form in the powdery growth as the crop matures. When mildew growth is severe, infected leaves wither and die early. The fungus overwinters on living and dead plants.

Choose resistant varieties of small grains to control powdery mildew. If the disease is present on lower leaves and the plants are reaching the boot stage, consider the application of foliar fungicides.
Scab

In its most conspicuous form, scab in wheat and barley is a head blight, recognized by the premature ripening or bleaching of one or more spikelets of a grain head any time after heading. The light yellow color of diseased regions of a head show in sharp contrast with the healthy green of the remaining portion of the head. A light pink or salmon color may appear at the base of infected spikelets. Infected kernels are a white, salmon, or reddish color, are badly shrunken and wrinkled, and have a noticeably rough, flaky seed coat. Sometimes the scab fungus girdles the stem below the head, not allowing the head to develop. Stem tissues immediately below the head will turn brown. Scab reduces yield and quality of wheat and barley.

The scab fungus produces mycotoxins that are harmful if scabby grain is fed to swine. In swine, avoid feeding wheat (or barley) with more than 10% scabby kernels, as this may cause vomiting, feed refusal, and reproductive problems since there is an increased risk for mycotoxins in these samples.

If seed from scabby fields is planted, seed rot, seedling blight, crown rot, and root rot can cause loss of stand and subsequent yield loss. The most common scab fungus, *Fusarium graminearum*, is the same organism that can cause root rot, stalk rot, and ear rot of corn. Thus, wheat or barley that is planted after corn generally has a higher incidence and severity of scab. If wheat or barley must follow corn, deep incorporation of corn debris should reduce the potential for scab development.

Septoria black stem of oat

Septoria black stem of oat appears as oval, chocolate-brown spots on leaf blades and sheaths. Small, black fruiting bodies of the fungus appear in the center of the spots. Stems under sheath spots are dark brown to black and are rotted. The rotted stems are weakened, and severely infected plants will lodge and make harvesting difficult. Infected kernels are purple to black. Oat varieties differ in susceptibility.

Septoria leaf blotch of wheat

Septoria leaf blotch is caused by the fungus *Septoria tritici*. Small, light green to yellow spots on the leaves and sheaths enlarge and merge to form irregular, tan to reddish brown blotches with gray-brown to ash-colored centers often partly surrounded by a yellow margin. Septoria leaf blotch can be found with another disease caused by the fungus *Stagonospora nodorum* and therefore, may be defined as a complex of the two diseases. Black specks (pycnidia) form in older lesions or at stem nodes. Affected leaves often turn yellow, wither, and die early. The fungus survives in living and dead wheat plants and in seed.

Rotate crops to control Septoria leaf blotch. If planting wheat in fields that were cropped to wheat the previous year, deep incorporation of wheat residues offers some control. Wheat varieties differ in resistance to Septoria leaf blotch. However, available levels of resistance will not provide adequate control during moderate to severe epidemics. Foliar-applied fungicides are necessary if weather and management practices create an environment favorable for severe Septoria leaf blotch development. Apply foliar fungicides at the emergence of the flag leaf into the boot stage to protect the flag leaf of plants.

Smut

Smut in small grains has greatly increased in recent years and has been particularly severe in oat. Plants infected with a smut fungus appear normal until the heads emerge. The grain in infected plants is replaced by the smut fungus and appears as a black powdery mass of spores. The smut fungi are carried with the seed and do not survive in the soil or plant debris. Planting seed from fields with smutted plants the previous year will perpetuate the problem. Do not confuse weathered blackened heads with smut.

The heads of small grains are often colonized by non-pathogenic fungi that make the heads black. However, in contrast to smut that replaces the grain with its sooty black spores, the grain is present in the weathered heads. Although similar in appearance and biology, smut diseases of small grains are caused by different fungi. These include loose smut of wheat, loose smut of barley, loose smut of oat, covered smut of oat, covered smut of barley and bunt, or stinking smut of wheat.

To control smut diseases of small grains, do not plant seeds from fields heavily infested with smut. You can use seed from fields with less than 1% smutted heads without a significant risk of smut development. Small grain seed certified by the Wisconsin Crop Improvement Association (wcia.wisc.edu) has been grown using procedures that control smut diseases. Plant resistant varieties. Many races of smut fungi of oat are present in Wisconsin and more races may develop that attack oat varieties that are currently resistant.

Certain fungicide seed treatments effectively control smut diseases of small grains (table 5-5). Mechanical seed treatment is recommended but not necessary. Follow the directions on the product label to assure proper treatment, handling, and use of seed treated with fungicide. Fungicide-treated seed cannot be used for food, feed, or oil.

Take-all

Take-all is a root rot disease caused by a soil-inhabiting fungus. Winter wheat is most affected. Winter wheat, barley, and oat are the least susceptible. Symptoms of take-all include stunted plants and bleached-white heads. Lower stems show a black, rotted appearance, and the plants present a rotted and sparse root system.
To reduce the incidence and severity of take-all, rotate crops and control wild grasses such as quackgrass. Make sure levels of soil nitrogen are adequate. The NH3 form of nitrogen suppresses take-all. Consider using nitrapyrin (N-Serve), a nitrogen stabilizer; it improves the effectiveness of nitrogen fertilization. Delay winter wheat planting to escape fall infection. Winter wheat planted after alfalfa may be at risk because of invasion by quackgrass. Take-all is seldom a problem in a rotation sequence of soybean-winter wheat.

Table 5-4. Fungicides for control of foliar diseases of small grains

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stem rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC codea)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute 500 SC</td>
<td>-</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>tebuconazole + trifloxystrobin</td>
<td>triazole (3) Qol (11)</td>
<td>crop-dependent</td>
<td>Wheat: 35 days for grain Barley: 40 days for grain</td>
<td>For use on barley and wheat only. For wheat do not apply more than 5 fl oz/a/season. Do not apply within 30 days of harvest for grazing and hay or 45 days for wheat straw. For barley do not apply more than 3.3 fl oz/a/season. Do not allow livestock to graze or harvest within 30 days for hay. Do not harvest within 45 days for hay.</td>
</tr>
<tr>
<td>AfterShock</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>6</td>
<td>x</td>
<td>8</td>
<td>fluoxastrobin</td>
<td>Qol (11)</td>
<td>2-4 fl oz</td>
<td>7 days</td>
<td>Remarks: Apply to wheat only. Do not apply more than 22.8 fl oz/a/year or more than six applications/season.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AmTide</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz</td>
<td>40 days for grain and straw, 30 days for forage, 45 days for hay</td>
<td>Remarks: Do not apply more than 8 fl oz/a per season or more than 4 fl oz/a/season when forage or hay is harvested.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aproach</td>
<td>-</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>x</td>
<td>picoxystrobin</td>
<td>Qol (11)</td>
<td>3-12 fl oz</td>
<td>45 days for grain, 7 days for forage, 14 days for hay</td>
<td>Remarks: No more than two sequential applications before switching to a fungicide with a different mode of action. For grain do not apply later than the beginning of flowering (Feekes 10.5). Do not exceed 36 fl oz/a/crop.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aproach Prima</td>
<td>x</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>picoxystrobin + cyproconazole</td>
<td>Qol (11) triazole (3)</td>
<td>3.4-6.8 fl oz</td>
<td>45 days; 21 days for forage or hay</td>
<td>Remarks: Do not apply more than 6.8 fl oz/a/year. Do not apply more than two sequential applications of fungicide products containing a Qol (11) component.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avaris</td>
<td>-</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>azoxystrobin + propiconazole</td>
<td>Qol (11) triazole (3)</td>
<td>7-14 fl oz</td>
<td>Barley, triticale: Do not apply within 45 days for grain harvest or 30 days for forage and hay. Wheat: Do not apply after Feekes 10.5</td>
<td>Remarks: Do not apply more than two applications/season. Do not apply more than 28 fl oz/a/season. Do not apply more than 0.22 lb ai/a propiconazole-containing products/season. Do not apply more than 0.40ai/a azoxystrobin-containing products/season.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: x = labeled, no data; - = not labeled for this disease

* Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.
Table 5-4. Fungicides for control of foliar diseases of small grains (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumper 41.8 EC</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-4 fl oz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, oat, rye, triticale: 30 days for forage or hay, 45 days for grain and straw. Wheat: Do not apply after Feekes 10.5 growth stage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: For use on barley, oat, rye, triticale, and wheat. Consult the label for disease- and crop-specific recommendations and rates.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caramba</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>metconazole</td>
<td>triazole (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-14 fl oz (13.5-17 fl oz for head scab suppression only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, oat, rye, triticale, and wheat. Make no more than two applications per season at a maximum product rate of 34 fl oz/a/season.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: For use on barley, oat, rye, triticale, and wheat. Make no more than two applications per season at a maximum product rate of 34 fl oz/a/season.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuprofix Ultra 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Disperss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>basic copper sulfate</td>
<td>inorganic (M1)</td>
<td>1-1.25 lb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custodia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aoxystrobin</td>
<td>QoI (11)</td>
<td>triazole (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4-8.6 fl oz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, oat, rye, triticale: 45 days for grain; 14 days for forage and hay. Do not apply more than 0.40 lb ai aoxystrobin-containing products/year. Do not apply to wheat after Feekes 10.5 growth stage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: For use on barley, oat, rye, triticale, and wheat. Refer to label for crop-specific information. Do not make more than three applications during the season. Do not graze livestock in treated areas prior to harvest.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dithane F-45 Rainshield</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dithane M-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mancozeb (M3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2 qt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, triticale: 45 days for grain, 30 days for forage or hay. Do not apply later than Feekes growth stage 10.5 or within 26 days of harvest.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: For use on barley, oat, rye, triticale, and wheat. Do not apply more than 0.40 lb ai/a/season of aoxystrobin-containing products. Do not apply more than two sequential applications of Quadris or other group-11 fungicides before alternating with a fungicide that is not in Group 11.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>aoxystrobin</td>
<td>QoI (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0-12.0 fl oz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, triticale: 45 days for grain, 30 days for forage or hay. Do not apply later than Feekes growth stage 10.5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: For use on barley, triticale, and wheat. Do not apply more than 0.40 lb ai/a/season of aoxystrobin-containing products. Do not apply more than two sequential applications of Quadris or other group-11 fungicides before alternating with a fungicide that is not in Group 11.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evito 480 SC</td>
<td>-</td>
<td>x</td>
<td>8</td>
<td>4</td>
<td>x</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fluoxastrobin</td>
<td>QoI (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Do not apply after Feekes 10.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: Use on wheat only. Do not apply more than 8 fl oz/year. The maximum is two applications per season.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evito T</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fluoxastrobin + tebuconazole</td>
<td>QoI (11) + triazole (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6 fl oz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley, triticale: 40 days for grain or straw; 7 days for forage or hay.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: Do not apply more than 12 fl oz per acre per year. Do not apply more than two applications per season.

Key: x = labeled, no data; - = not labeled for this disease
* Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.
Table 5-4. Fungicides for control of foliar diseases of small grains (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/acre</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folicur 3.6F</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4 fl oz</td>
<td>Do not apply within 30 days of harvest</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on barley and wheat. A maximum of 4 fl oz may be applied/acre/season.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortix</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>fluoxastrobim + flutriafol</td>
<td>QoI (11) triazole (3)</td>
<td>2-6 fl oz</td>
<td>40 days for grain; 15 days for hay; 7 days for forage</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For early season suppression of diseases apply 2-3 fl oz of Fortix. To protect the flag leaf, apply when 50% or all of the flag leaf is emerged and use 4-6 fl oz per acre. Do not apply more than 12 fl oz per acre per year.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headline SC</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>pyraclostrobin</td>
<td>QoI inhibitor (11)</td>
<td>6-9 fl oz</td>
<td>Barley, rye: Apply no later than 50% head emergence (Feekes 10.3; Zadoks 55) Oat, wheat, triticale: Apply no later than the beginning of flowering (Feekes 10.5; Zadoks 55)</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on barley, oat, rye, triticale, and wheat. Do not make more than two sequential foliar applications. Do not apply more than 18 fl oz/acre/season.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kocide 2000</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>copper hydroxide</td>
<td>inorganic (M1)</td>
<td>1.0-1.5 lb</td>
<td>0 days</td>
</tr>
<tr>
<td>Kocide 3000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>0.50-0.75 lb</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on barley, oat, and wheat. Maximum rate is 3.5 lb/acre/season.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koverall</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>mancozeb</td>
<td>dithiocarbamate (M3)</td>
<td>2.0 lb</td>
<td>26 days</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on wheat, barley, oat, and triticale. Do not apply more than 6.0 lb/acre/season. Do not graze livestock on treated area prior to harvest.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manzate ProStick</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>mancozeb</td>
<td>dithiocarbamate (M3)</td>
<td>2.0 lb</td>
<td>26 days</td>
</tr>
<tr>
<td>Manzate Flowable</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>1.6 qt</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on barley, oat, rye, triticale, and wheat. No more than three applications per season. Do not apply more than 6 lb Manzate ProStick or 4.8 qt Manzate Flowable/acre/crop. Do not graze livestock in treated areas prior to harvest.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle 3.6 F</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Oritis 3.6 F</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For wheat and barley only. A maximum rate of 4 fl oz/acre/season may be applied.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penncozeb 75 DF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>mancozeb</td>
<td>dithiocarbamate (M3)</td>
<td>1.0–2.0 lb</td>
<td>Do not apply after heading or Feekes 10.5 but not less than 26 days before harvest</td>
</tr>
<tr>
<td>Penncozeb 80 WP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>1.0–2.0 lb</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For use on barley, oat, rye, triticale, and wheat. No more than three applications per season. Read label for total amount of product to apply per acre per season.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: x = labeled, no data; - = not labeled for this disease

4 Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.
Table 5-4. Fungicides for control of foliar diseases of small grains (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priaxor</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>fluxapyroxad + pyraclostrobin</td>
<td>carboximide (7) Qol (11)</td>
<td>4-8 fl oz</td>
<td>Barley, oat: Apply no later than 50% head emergence (Feekes 10.3; Zadoks 55) Rye, triticale, wheat: Apply no later than beginning of flowering (Feekes 10.5; Zadoks 59)</td>
</tr>
<tr>
<td>Proline 480 SC</td>
<td>6</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td></td>
<td>prothioconazole</td>
<td>triazole (3)</td>
<td>2.8-5.7 fl oz</td>
<td>Barley: 32 days Oat, rye, triticale, wheat: 30 days</td>
</tr>
<tr>
<td>Propicure</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>x</td>
<td>8</td>
<td>8</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz.</td>
<td>Wheat, barley, rye, triticale, oat: 40 days for grain, 30 days for forage, 45 days for hay</td>
</tr>
<tr>
<td>PropiMax EC</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz.</td>
<td>Wheat: Do not apply after Feekes 10.5 Barley, oat, rye, triticale: 30 days for forage or hay, 45 days for grain and straw</td>
</tr>
<tr>
<td>Prosaro 421 SC</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>prothioconazole + tebuconazole</td>
<td>triazole (3) Qol (11)</td>
<td>6.5-8.2 fl oz</td>
<td>30 days</td>
</tr>
<tr>
<td>Quadris</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>azoxystrobin</td>
<td>Qol inhibitor (11)</td>
<td>4.0-12.0 fl oz</td>
<td>Wheat, triticale: 14 days if used for grazing</td>
</tr>
</tbody>
</table>

Remarks: NO more than two applications per season or two consecutive applications before alternating to a labeled fungicide with a different mode of action. Do not apply more than 16 fl oz/a/season.

Remarks: For use on barley, oat, rye, triticale, and wheat. Consult the label for crop and disease specific recommendations and rates.

Remarks: Do not apply more than 8 fl oz/a/season. Do not apply more than 4 fl oz/a/season if forage or hay will be harvested.

Remarks: For use on barley, oat, rye, triticale, and wheat. Do not apply more than 8 fl oz/a/season. Do not apply more than 4 fl oz/a/season if forage or hay will be harvested.

Remarks: For use on barley and wheat. A maximum of 8.2 fl oz/a/crop/year may be applied. Straw may be fed or used for bedding. Grazing permitted 6 or more days after last application.

Remarks: For use on barley, triticale, wheat, oat, and rye. Do not apply more than 8 fl oz/a/season. Do not apply more than 4 fl oz/a/season if forage or hay will be harvested.

Remarks: For use on barley, triticale, wheat, oat, and rye. Do not apply more than 0.40 lb. ai/a/season of azoxystrobin-containing products. Do not apply more than two sequential applications of Quadris or other Group-11 fungicides before alternating with a fungicide that is not in Group 11.

Key: x = labeled, no data; - = not labeled for this disease

*Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.

Continued on next page
Table 5-4. Fungicides for control of foliar diseases of small grains (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blight</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code<sup>a</sup>)</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quilt</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole + azoxystrobin</td>
<td>triazole (3) Qol inhibitor (11)</td>
<td>7-14 fl oz</td>
<td>Wheat: Do not apply after Feekes growth stage 10.5 or within 7 days for forage or hay Barley, triticale: 45 days for grain, 30 days for forage or hay Oat, rye: 0 days</td>
<td></td>
</tr>
<tr>
<td>Quilt Xcel</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole + azoxystrobin</td>
<td>triazole (3) Qol inhibitor (11)</td>
<td>7-14 fl oz</td>
<td>Wheat: Do not apply after Feekes growth stage 10.5 or within 7 days for forage or hay Barley, triticale: 45 days for grain, 30 days for forage or hay Oat, rye: 0 days</td>
<td></td>
</tr>
<tr>
<td>Stratego</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>propiconazole + trifloxystrobin</td>
<td>triazole (3) Qol inhibitor (11)</td>
<td>7-10 fl oz</td>
<td>Barley, oat: Do not apply after Feekes growth stage 8 or within 40 days of harvest Wheat, triticale: Do not apply after Feekes 10.5 growth stage or within 35 days of harvest</td>
<td></td>
</tr>
<tr>
<td>Stratego YLD</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>propiconazole + trifloxystrobin</td>
<td>triazole (3) Qol inhibitor (11)</td>
<td>2.3-4.0 fl oz</td>
<td>Barley: Do not apply after Feekes growth stage 8 or within 40 days of harvest Wheat: Do not apply after Feekes growth stage 10.5 or within 35 days of harvest</td>
<td></td>
</tr>
<tr>
<td>TebuStar 3.6L</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>4 fl oz</td>
<td>30 days</td>
<td>Remarks: For use on barley and wheat. Consult label for crop- and disease-specific information.</td>
</tr>
<tr>
<td>TebuZol</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>tebuconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz</td>
<td>30 days</td>
<td>Remarks: For use on barley and wheat. Read label for specific crop-use information.</td>
</tr>
</tbody>
</table>

Remarks:
- Quilt: For use on barley, triticale, wheat, oat, and rye. Do not apply more than two applications per acre per season. Do not apply more than 28.0 fl oz/a/season of Quilt. Do not apply more than 0.22 lb ai of propiconazole-containing products/a/season. Do not apply more than 0.40 lb ai azoxystrobin-containing products/a/season.
- Quilt Xcel: For use on barley, triticale, wheat, oat, and rye. Applications can be made not closer than a 14-day interval. Do not apply more than two applications per acre per season. Do not apply more than 28.0 fl oz/a/season of Quilt Xcel or more than 0.22 lb ai of propiconazole-containing products/a/season. Do not apply more than 0.40 lb ai azoxystrobin-containing products/a/season. Under certain environmental conditions, tank mixes of Quilt Xcel plus herbicides and/or fertilizers may cause crop injury.
- Stratego YLD: For use in barley and wheat. Do not apply more than two applications of Stratego YLD or other Group 11-containing fungicide/a/season. Consult label for further rate restrictions.
- TebuStar 3.6L: For use on barley and wheat. Read label for specific crop-use information.
- TebuZol: For use on barley and wheat. Read label for specific crop-use information.

*Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.

Key:
- x = labeled, no data; - = not labeled for this disease
- Preharvest interval (PHI): The time period before harvest when the fungicide can be applied without affecting the quality of the grain.
Table 5-4. Fungicides for control of foliar diseases of small grains (continued)

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz</td>
<td>0 days for grain; 7 days for forage</td>
</tr>
</tbody>
</table>

Remarks: For use on barley, rye, oat, triticale, and wheat. Do not apply more than 8 fl oz/a/season. Do not apply more than 4 fl oz/a/season of Tilt if forage or hay will be harvested. Do not apply more than 0.22 lb ai propiconazole-containing products/a/season.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topaz</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>propiconazole</td>
<td>triazole (3)</td>
<td>2-4 fl oz</td>
<td>Wheat: Do not apply after Feekes 10.5 Barley, oat, rye, triticale: Do not apply within 30 days for forage or hay</td>
</tr>
</tbody>
</table>

Remarks: Do not apply more than 8 fl oz/a/season, or more than 0.22 lb ai/a propiconazole-containing product/season.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivapro A</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>benzovindiflupyr</td>
<td>carboximides (7)</td>
<td>4 fl oz</td>
<td>Do not apply after Feekes 10.5.4</td>
</tr>
</tbody>
</table>

Remarks: Apply in a tank mix with labeled rate of a registered fungicide containing FRAC group 3 and 11 active ingredients. Do not apply more than two applications before switching to a non-group 7 mode of action. The use of a spreading/penetrating adjuvant is recommended. Do not apply more than 14 fl oz per acre per year.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivapro B</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>Azoxystrobin + propiconazole</td>
<td>QoI (11) + triazole (3)</td>
<td>10.5 fl oz</td>
<td>Do not apply after Feekes 10.5.4</td>
</tr>
</tbody>
</table>

Remarks: Do not apply more than two applications per year. Do not apply more than 28 fl oz per acre per year.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twinline</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>pyraclostrobin + metconazole</td>
<td>QoI inhibitor (11) triazole (3)</td>
<td>7-9 fl oz</td>
<td>Apply not later than the beginning of flowering (Zadoks 59 or Feekes 10.5); do not harvest barley hay within 14 days of last application</td>
</tr>
</tbody>
</table>

Remarks: For use in barley, oat, rye, triticale, and wheat. NO more than two applications of 18 fl oz/a/season.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Fusarium head scab</th>
<th>Stripe rust</th>
<th>Leaf rust</th>
<th>Stem rust</th>
<th>Powdery mildew</th>
<th>Septoria leaf blotch</th>
<th>Glume blotch</th>
<th>Tan spot</th>
<th>Active ingredient(s)</th>
<th>Chemical family (FRAC code(^a))</th>
<th>Amount/use/a</th>
<th>Preharvest interval (PHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viathon</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Potassium phosphate + Tebuconazole</td>
<td>phosphate (33) + triazole (3)</td>
<td>2 pts.</td>
<td>30 days</td>
</tr>
</tbody>
</table>

Remarks: This product is only labeled for suppression of Fusarium head scab in barley. Fusarium head scab application should be made at Feekes 10.5.1 and will result in suppression only in barley and wheat. For glume blotch control, apply when 50% of wheat heads are in flower. Hay can be grazed or fed 6 days after application. Hay may be used as bedding.

Key: x = labeled, no data; - = not labeled for this disease

\(^a\)Fungicide group numbers indicate the modes of action: multiple applications of fungicides with same group number increases the chances for resistance.
Table 5-5. Seed treatment fungicides for small grains

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Active ingredient(s)</th>
<th>Oat</th>
<th>Wheat</th>
<th>Barley</th>
<th>Seed/seedling decay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oat all smuts</td>
<td>Wheat loose smut</td>
<td>Barley loose smut</td>
<td>Covered smut</td>
</tr>
<tr>
<td>Apron XL</td>
<td>mefenoxam</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dividend Extreme</td>
<td>difenconazole+ mifenoxam</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dividend XL RTA¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhance</td>
<td>carboxin + captan</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gaucho 600</td>
<td>tebuconazole+ metalaxyl+ imidacloprid</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Manzate Flowable</td>
<td>mancozeb</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Manzate Pro-Stik</td>
<td></td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dithane M-45</td>
<td></td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Penncozeb 75DF</td>
<td></td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Maxim 4FS</td>
<td>fludioxonil</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nipsit SUITE</td>
<td>metalaxyl metconazole</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Raxil-thiram</td>
<td>tebuconazole+ thiram</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Rizolex²</td>
<td>tolclofos-methyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: x = labeled, no data; - = not labeled for this disease

¹ This table is intended as a reference guide. Chemicals, combinations, and labels change frequently—check current label for details.

² Also labeled for use on triticale.

³ Loose smut only.
PERENNIAL WEED MANAGEMENT
Perennial weed management

Perennial weeds are less widespread than annuals but have been more difficult to manage because they propagate by vegetative means as well as by seeds. Knowing how a plant propagates (tubers, taproots, spreading roots, or rhizomes) is an important first step in designing an appropriate management program. For example, while taprooted weeds like dandelions are eliminated with moldboard plowing, this same tool will not eradicate weeds with spreading roots such as hemp dogbane and Canada thistle or those with rhizomes like quackgrass and wirestem muhly.

This section gives information on common perennial weeds. Table 6-1 provides herbicide considerations on these and other perennial species troublesome in some areas of Wisconsin. Few details regarding herbicide treatments are presented here; consult earlier sections of this bulletin for additional information.

The advent of herbicide-resistant crops has improved management for perennial weeds. Herbicides that previously would kill the crop can now be used to tackle difficult-to-control perennials at a more appropriate time of treatment and still have the benefit of crop competition after application. Noticeable long-term reductions in perennial weed infestations have been documented in both University of Wisconsin research trials and by farmers in production fields.

Quackgrass

Quackgrass is a persistent perennial weed. Its extensive system of rhizomes (underground stems) and roots represents 60-70% of the plant’s weight and contains abundant food reserves. Rhizomes enable quackgrass to resprout after management. Quackgrass is quite sensitive to soil disturbance during the growing season and is most effectively managed by a combination of mechanical, chemical, and cultural control practices. Repeated tillage or herbicide treatment controls quackgrass by depleting reserves and preventing the production and accumulation of additional reserves. Tillage and cultivation are most effective during periods of warm, dry weather because quackgrass rhizomes brought to the soil surface dry out and die. Late fall cultivation can also be effective as freezing winter temperatures also help kill exposed quackgrass rhizomes. Herbicide recommendations vary according to the season in which control begins, the crop to be planted, and the product(s) to be used.

Corn:

- Accent Q (nicosulfuron)
- Option (fomesafen)

Accent Q and Option are postemergence sulfonurea herbicides that selectively control quackgrass in corn. They are particularly well suited for fields where quackgrass appears in localized areas and where other herbicides are inappropriate or difficult to use in a specific cropping system. These products translocate from the foliage to the rhizomes and do not affect quackgrass through soil uptake. Injury symptoms in quackgrass may appear slowly (7-10 days) and action may not be complete until 30 days after application. Quackgrass that emerges after application and any escaping weeds can be controlled with a cultivation 7 or more days after treatment. Do not cultivate fields before applying Accent Q or Option as this will reduce quackgrass control. Half-rate applications applied to actively growing quackgrass followed by a timely cultivation has consistently given acceptable quackgrass control. We expect similar results with Option. The effects of a single application are usually evident for two or more seasons. The active ingredient of Accent Q is available in several premixed products and provides acceptable quackgrass control.

Soybean:

- Assure II (quizalofop),
- Fusion (fluazifop + fenoxaprop)
- Poast Plus (sethoxydim)
- Select Max (clethodim)

All of these “gramicinides” (grass killers) are labeled for quackgrass control in soybean. They translocate from the treated foliage into the rhizomes. Assure is generally more active on quackgrass than Fusion, Poast Plus, or Select Max. All of the products reduce quackgrass below the economic threshold and have effects that are evident for more than one season. Do not cultivate 7 days before or after applying any of these products, but cultivating 7-14 days later often improves overall weed control. Dry weather or other stress conditions will reduce quackgrass control.

Alfalfa and trefoil:

- Poast Plus (sethoxydim)
- Select (clethodim)

These are the only grass-specific herbicides approved for use in alfalfa and trefoil. Symptoms develop slowly on quackgrass, but active growth ceases upon application and within 10-21 days the stems are easily pulled from treated plants, indicating they are dying. Poast Plus and Select suppress quackgrass significantly in the first cutting of forages but the long-term effects are less evident in alfalfa than in soybean followed by tillage.

Roundup Ready corn, soybean, and alfalfa (before planting conventional varieties/hybrids):

- Roundup PowerMAX (glyphosate)

Many brands of glyphosate can be applied before planting crops to kill existing vegetation. Glyphosate applied to actively growing quackgrass is rapidly translocated throughout the quackgrass rhizome system. Treat when quackgrass is 6-8 inches tall (3- to 4-leaf stage) and actively growing in either the fall or spring. Where possible, treat in the fall rather than in the spring. The rate to use for quackgrass control depends upon the previous cropping system, level of tillage after application, spray volume, and the concentration of glyphosate in the brand.
you select. In sites where row crops have been grown and tillage is practiced, 0.75 lb ae/a of glyphosate in 10 gal/a or less of water is usually recommended. For no-till sites, 1.0–1.5 lb ae/a is recommended.

Glyphosate can be applied directly to quackgrass in Roundup Ready soybean and Roundup Ready corn. This method can be used in untreated fields that were tilled before planting. Glyphosate offers little advantage in quackgrass in-season control over selective herbicides in corn and soybean for the season but should give better long-term control.

Symptoms of injury to quackgrass may not occur until 7-10 days after application. Cool, cloudy weather after treatment slows the appearance of symptoms. The effects of a single glyphosate application are usually evident for several seasons, especially in fields that were tilled before planting and/or cultivated after planting.

Some brands of glyphosate can be applied prior to the final alfalfa harvest in the fall or spring to control quackgrass before rotating to another crop. Apply the recommended rate and wait 36 hours or longer before harvesting. No other product can be tank mixed with glyphosate, and tillage may be needed to enhance the control of quackgrass and to kill perennial broadleaf species, including alfalfa, before the next crop is planted.

Wirestem muhly

Unlike most of our weeds, wirestem muhly is native to North America. It has increased in importance in Wisconsin in recent years. This is due to several factors, including less tillage, enhanced control of other species, loss of diversity in crop rotations (especially fewer forages), and the production and spread of wirestem muhly seeds. Because wirestem muhly is a warm-season species, growth starts later in the spring than for quackgrass and other cool-season plants. Wirestem muhly rhizomes grow near the surface; therefore, shallow tillage can be effective in suppressing this weed. Vigorous tillage done just as growth begins in the spring has been observed to yield the best results.

Control in soybean

Wirestem muhly is easily controlled with post-emergence applications of Assure II, Fusion, Poast Plus, or Select Max. Use a crop oil concentrate and treat when wirestem is 6-8 inches tall and actively growing. Planting Roundup Ready soybean varieties and using glyphosate as a postemergence treatment is another option. This may even be practical in no-till systems because wirestem emerges later and grows more slowly in the spring than quackgrass.

Control in corn

Wirestem muhly control is very challenging in corn. Try to achieve effective suppression before planting corn with appropriate control measures the prior season. Accent and Option applied to wirestem 4-8 inches tall gives acceptable wirestem suppression. Planting a Roundup Ready corn hybrid and applying glyphosate as a post-emergence treatment is another way to suppress wirestem muhly. All treatments will give better control if the field is vigorously cultivated 10 or more days after application.

Control in other crops

Wirestem muhly is often an unnoticed weed in alfalfa fields. Use a fall application of glyphosate the year before rotating from alfalfa to corn or other crops. Planting wheat in fields with wirestem muhly can be as effective as the tillage prior to seeding wheat will reduce the rhizome mass and wheat will compete very effectively with wirestem muhly because it grows vigorously in the spring. After wheat harvest, use a combination of glyphosate and tillage to further reduce the infestation.

Yellow nutsedge

Yellow nutsedge is a persistent perennial weed that reproduces by seed and tubers (nutlets) produced on its rhizome system. Each nutsedge plant can produce nearly 7,000 tubers in a single season. If not controlled, an acre may contain more than 30,000,000 tubers in the upper 10 inches of the soil. The best control strategy is early detection and removal. While most tubers develop into new plants the next year, many can remain dormant in the soil for several years. Yellow nutsedge is usually found as isolated patches, in low wet areas, and in soils with high amounts of organic matter, but populations can also establish in upland mineral soils.

Yellow nutsedge control is feasible in some crops and difficult in others. Tillage is an essential part of yellow nutsedge management. While the best combination of tillage and chemical treatment may not always provide full-season control, it can suppress nutsedge during the critical period of competition. Many soil-applied herbicides lose much of their effectiveness when applied to the high organic matter soils where yellow nutsedge is often found. Postemergence treatments are not affected by soil texture or organic matter levels and are especially appropriate when nutsedge occurs in patches of fields. In no-till cropping systems, use postemergence strategies to suppress nutsedge because preplant incorporation cannot be done and preemergence applications give inconsistent control.

The following herbicide treatments provide varying degrees of nutsedge control. Individual treatments may be used only on specific field crops as listed.

Corn and soybean:

Acetochlor

Alachlor

Dual II Magnum (s-metolachlor)

Outlook (dimethenamid-P)

These herbicides are chemically related and are registered for use in corn and soybean. All give adequate nutsedge suppression when applied as preplant-incorporated treatments, but preemergence applications will give adequate suppression only if abundant rainfall occurs within 5-8 days of treatment. Dual often provides better late-season control of nutsedge than the other herbicides. Rates of these products will usually be higher than those needed for annual weeds. Alachlor and acetochlor are more active on yellow nutsedge in muck soils than the other products in this group.

Soybean:

Authority premixes (sulfentrazone)

Authority premixes—Authority Assist, Authority First/Sonic, Authority XL, and Authority MITZ—are labeled for nutsedge control. Apply prior to soybean cracking, or significant crop injury will occur.
Corn, soybean, and dry or succulent beans:

Basagran (bentazon)

Basagran applied to actively growing nutsedge that is 6-8 inches tall provides good suppression in corn, soybean, and dry or succulent beans. A repeat application may be made 7-10 days after the first application if necessary, or the field may be cultivated 10-21 days after the first application. Do not apply when either the crop or nutsedge has been exposed to prolonged drought or during periods of unseasonably cold weather as poor weed control will result. Do not cultivate fields within 5 days before or after Basagran treatment. Basagran can be tank mixed with several herbicides and is sold as a premix with other products for simultaneous application in corn and soybean. Nutsedge suppression is not usually affected by these mixtures.

Soybean:

Classic (chlorimuron)

Classic is the only sulfonylurea with significant activity on nutsedge in soybean. Treat when nutsedge is 2-4 inches tall and cultivate 14 or more days after treatment if needed.

Corn:

Permit (halosulfuron)

Permit is a sulfonylurea applied to corn as a postemergence treatment that gives good to excellent nutsedge control. Use a crop oil concentrate to assure maximum performance and apply Permit when nutsedge is 4-12 inches tall. The label indicates that 1.0-1.33 oz/a are needed to control nutsedge and 0.67 oz/a to suppress it. However, our data show excellent control even at the 0.67 oz rate. We suggest using 0.67 to 1.0 oz/a and treating when nutsedge averages 8-10 inches tall. By waiting for it to reach this height, few additional plants should appear after application. However, a timely row cultivation is recommended to ensure full-season control. The premixture of halosulfuron and dicamba (Yukon) also controls yellow nutsedge.

Perennial broadleaf control in glyphosate-resistant crops

Roundup Ready crops have improved the control of several perennial broadleaf species. Excellent suppression of perennial weeds like hemp dogbane, Canada thistle, milkweed, Jerusalem artichoke, field and hedge bindweed, and perennial sowthistle can be obtained and last for several seasons. Research on glyphosate-resistant corn and soybean has led to the following suggestions to manage perennial broadleaf weeds in glyphosate-resistant crops.

- **Plant the crop without tillage.** Tillage delays the development of perennial weeds, while in a no-till system the weed grows rapidly and reaches the ideal growth stage for treatment sooner than if tillage were done.
- **Delay the application until the bud stage on the perennial broadleaf weed or until the weed is 24-30 inches tall, whichever occurs first.** Apply these guidelines to the most advanced plants in the population.
- **The right time to treat perennial broadleaves is often 5-7 weeks after planting, when the soybean are in the V4-V6 growth stage.** This is later than when annual weeds would normally be treated. However, this later timing (bud stage) is often the best time for perennials because herbicide movement from the treated foliage to the roots is maximized.
- **To avoid crop yield loss due to uncontrolled annual weeds while waiting to treat perennial broadleaves, apply a preemergence herbicide as a tank mixture with the burndown treatment before planting.** Select the preemergence herbicide based on the expected annual weed population.
- **In fields with perennial broadleaf weeds where tillage has been done, apply a reduced rate of a preplant incorporated or preemergence herbicide.** It may take longer for the perennial species to reach the flowering stage in these fields.
- **Application timing is more important than rate.** Our research has shown that applying 0.75-1.0 lb of acid equivalent (ae) per acre of glyphosate to actively growing perennial weeds in the bud to early flower stage gives excellent control the season of application with greatly reduced weed populations the next year.

- **Split applications of glyphosate are not necessary.** Control from a single treatment when perennial broadleaves begin to flower is as effective as repeated treatments. This means that no additional trips through fields with perennial broadleaf weeds should be needed.
- **Uniform coverage of the weed foliage is as important as it is difficult.** As mentioned, weed height is seldom uniform in a population of perennial broadleaves. Select the appropriate nozzles and adjust the boom height to cover the weed foliage as uniformly as possible. Remember that boom height also affects the risk of particle drift from the target area.
- **Monitor the population of the perennials in following years and use an appropriate management program if/when perennials again reach threshold levels.**

Canada thistle in conventional grain crops and pastures

Canada thistle infests croplands, pastures, fencerows, ditch banks, and roadsides. While infestations can start from seed, most shoots emerge from the extensive horizontal and vertical root system. Roots may penetrate to 10 feet deep and spread horizontally 15 feet or more. Single plants form either male or female flowers, and a patch of Canada thistle plants usually consists of only one flower type. The degree of spininess, the extent of leaf lobing, leaf width, and flower color may differ among Canada thistle plants. For example, in Wisconsin, both purple- and white-flowered biotypes of Canada thistle exist.
Repeated mowing should prevent Canada thistle from spreading to new areas and if conducted at the right stage, reduce the area infested. Tillage is more effective than mowing because it exposes roots to drying or freezing conditions and also prevents the buildup of food reserves in the roots. Tillage may, however, spread the roots to previously uninfested parts of the field. Grazing Canada thistle at high stocking rates multiple times per year can also suppress this plant. Combining mechanical and chemical controls gives the best results.

Corn and small grains:

Banvel/Clarity/Status (dicamba)

Shredder (2,4-D)

Even though dicamba and 2,4-D are systemic herbicides, a single application will not kill the entire root system. This is especially true in corn and small grains because the rates that can be safely applied, and the time of application will not give long-term control of Canada thistle. Status contains dicamba and difluenzopyr; it can be used in corn and gives results equivalent to dicamba alone on several perennial broadleaf weeds.

Pastures:

Milestone (aminopyralid)

Milestone, a relatively new herbicide, has shown the best results in suppressing Canada thistle in Wisconsin. Apply treatments at the flower bud stage in the spring or in the fall to respouting rosettes. Research has shown that fall treatments can be applied as long as plants appear to be actively growing and have green leaves. Similar to Stinger, the results of one application are evident for 2-3 years. Follow rotational crop, hay, manure, and drift control guidelines carefully as this herbicide can persist in the soil for over a year and inhibit growth of broadleaf plants, especially legumes. Some broadleaf weeds are fairly tolerant to Milestone. If one wishes to control these weeds, mixing 2,4-D with Milestone (prepackaged and sold as ForeFront) or metsulfuron (prepackaged as Chaparral) are effective options.

Between crops:

Roundup PowerMAX (glyphosate)

An effective time to use glyphosate for Canada thistle control is after harvesting wheat or oats for grain or an early-season vegetable crop like peas or sweet corn. This allows treatment at an effective rate when the thistles have regrown and are actively translocating food reserves to the root system.

Corn, small grains, and pastures:

Stinger (clopyralid)

While Stinger can be applied in the same crops as Banvel and 2,4-D and has the same mode of action, only a single application is needed for good to excellent Canada thistle suppression. The effects of a single treatment are usually evident for several years. The rate can be adjusted according to thistle density. Apply higher rates in dense thistle areas because there are more roots with buds than in areas where infestations are light to moderate. Apply Stinger when nearly all plants have emerged and Canada thistle is in the rosette to prebud stage.

Stinger persists in the soil several months after application. Follow rotational crop and drift control guidelines carefully. The relatively high price of Stinger compared to other herbicides is often justified because the cost can be spread over several years since annual treatments are not needed, and usually only a small proportion of a given field needs treating. Stinger can be tank mixed with 2,4-D or dicamba for a more economical treatment. Other preemix herbicides used in corn that contain clopyralid and would aid in thistle control include SureStart, TripleFLEX, and Hornet.

Hemp dogbane in conventional crops

Hemp dogbane has both vertical and horizontal roots. Plants often spread within fields and from field to field because farmers inadvertently transport a piece of the perennial root to new locations, producing new dogbane colonies.

Plants may flower, but establishment from seed is of minor importance. Studies in Kansas found that plants originating from seeds and grown for 2 years without competition formed vertical roots nearly 14 feet deep and horizontal roots that extended almost 40 feet in diameter. Six to 8 weeks after seed germination, hemp dogbane is considered “established” because it can then reproduce vegetatively from the root. Once established, hemp dogbane grows much more rapidly than corn or soybean, especially in no-till systems. We can use this to our advantage because most postemergence treatments are more effective on larger rather than smaller plants, and in no-till fields, the weed develops more rapidly than in plowed fields. Thus, plants can be treated sooner in the season before significant crop losses from competition have occurred.

Glyphosate applied at 0.75-1.5 lb ae/a in glyphosate-resistant soybean or 0.75-1.125 lb ae/a in glyphosate-resistant corn crops should be effective for controlling hemp dogbane. Select rates based on size of dogbane plants, size of dogbane patches, and environmental conditions that may influence glyphosate activity.

Corn and small grains:

Banvel/Clarity (dicamba)

Shredder (2,4-D)

Dicamba and 2,4-D have very good activity on hemp dogbane. They are more effective on this weed at the rates we can use in corn and small grains than they are on Canada thistle. In a between-crops situation, Iowa State researchers applied 1.0 lb ai/a of 2,4-D and observed 97% dogbane control 1 year after application. University of Illinois weed scientists observed a 60% reduction in dogbane infestation from a 0.5 lb ai/a application of 2,4-D in corn with seven to eight leaves and dogbane in the early flower stage. Hemp dogbane is listed on many brands of 2,4-D. However, labels require the use of drop nozzles once corn is more than 8 inches tall. This is a serious problem because it is often too early to treat the dogbane effectively since some plants have not yet emerged, and those that have are translocating very little material to the roots. When most hemp dogbane has emerged and plants are in the bud stage, the weed is usually much taller than the crop, and drop nozzles will not give effective control. Dogbane is more likely to be at the proper growth stage when no-till corn is 6-8 inches tall than when conventional or reduced tillage is used.

Even though these products are systemic herbicides, a single application will not kill the entire root system. Ester formulations of 2,4-D are particularly effective in glyphosate-resistant crops. Typically, 0.75-1.5 lb ae/a in glyphosate-resistant corn crops to prebud stage. While Stinger can be applied in the same crops as Banvel and 2,4-D and has the same mode of action, only a single application is needed for good to excellent Canada thistle suppression. The effects of a single treatment are usually evident for several years. The rate can be adjusted according to thistle density. Apply higher rates in dense thistle areas because there are more roots with buds than in areas where infestations are light to moderate. Apply Stinger when nearly all plants have emerged and Canada thistle is in the rosette to prebud stage.

Stinger persists in the soil several months after application. Follow rotational crop and drift control guidelines carefully. The relatively high price of Stinger compared to other herbicides is often justified because the cost can be spread over several years since annual treatments are not needed, and usually only a small proportion of a given field needs treating. Stinger can be tank mixed with 2,4-D or dicamba for a more economical treatment. Other preemix herbicides used in corn that contain clopyralid and would aid in thistle control include SureStart, TripleFLEX, and Hornet.
effective. In most cases, 2,4-D and dicamba give similar results on hemp dogbane but occasionally 2,4-D is more effective. A tank mix of these products can be applied. Status herbicide contains dicamba and diflufenzopyr; it can be used in corn and gives results equivalent to dicamba alone on several perennial broadleaf weeds. Cultivation after treatment in corn will further weaken the plants. Cultivators with sweeps will be more effective than those with points or narrow shovels.

Between crops:
Roundup PowerMAX (glyphosate)

As with Canada thistle, a good opportunity to use glyphosate for hemp dogbane control is after harvesting wheat or oats for grain or an early-season vegetable crop like peas or sweet corn. This allows treatment with an effective rate when the dogbane has regrown and is actively translocating food reserves to the root system.

Small grains and corn (field or sweet):
Starane (fluroxypyr)

Starane applied postemergence effectively controls hemp dogbane. The use of Starane in small grains was described previously. In field or sweet corn, apply Starane up to the V-5 growth stage. Do not apply Starane once corn has six or more visible leaf collars.

Table 6-1. Summary of herbicides for perennial weed suppression in corn and soybeans

<table>
<thead>
<tr>
<th>Weed</th>
<th>Time of application</th>
<th>Corn</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindweeds</td>
<td>POST</td>
<td>dicamba</td>
<td>Flexstar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status 2,4-D</td>
<td>Ultra Blazer</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>between crops</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>dicamba</td>
<td>Basagran + Ultra Blazer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Stinger 2,4-D</td>
<td>Synchrony</td>
</tr>
<tr>
<td>Dandelion</td>
<td>POST</td>
<td>dicamba</td>
<td>Classic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberty 280 SL</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Steadfast Q</td>
<td>Synchrony</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stinger</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4-D</td>
<td></td>
</tr>
<tr>
<td>Hemp dogbane</td>
<td>between crops</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Starane Status 2,4-D</td>
<td></td>
</tr>
<tr>
<td>Milkweed, common</td>
<td>between crops</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>dicamba + 2,4-D</td>
<td>Cobra/Phoenix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX Permit/Yukon Status 2,4-D</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permit/Yukon Ultra Blazer</td>
<td></td>
</tr>
<tr>
<td>Perennial sowthistle</td>
<td>between crops</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>dicamba</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dicamba + 2,4-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX Permit/Yukon Status 2,4-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status Stinger</td>
<td></td>
</tr>
<tr>
<td>Quackgrass</td>
<td>preplow/preplant</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>Accent Q</td>
<td>Assure II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX Option</td>
<td>Fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Poast Plus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Select 2EC/Max</td>
</tr>
</tbody>
</table>

*These applications can only be made to Roundup Ready varieties/hybrids with brands of glyphosate clearly approved for use in these varieties/hybrids.

*Apply only in Liberty Link hybrids.
Table 6-1. Summary of herbicides for perennial weed suppression in corn and soybeans (continued)

<table>
<thead>
<tr>
<th>Weed</th>
<th>Time of application</th>
<th>Corn</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirestem muhly</td>
<td>preplow/PPI</td>
<td>Roundup PowerMAX</td>
<td>Roundup PowerMAX</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>Accent Q</td>
<td>Assure II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roundup PowerMAX(^a)</td>
<td>Fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liberty 280 SL(^b)</td>
<td>Roundup PowerMAX(^c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Option</td>
<td>Poast Plus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steadfast Q</td>
<td>Select 2EC/Max</td>
</tr>
<tr>
<td>Yellow nutsedge</td>
<td>PPI/PRE</td>
<td>acetochlor</td>
<td>Authority Assist</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>alachlor</td>
<td>Authority First/Sonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual</td>
<td>Authority MTZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outlook</td>
<td>alachlor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Outlook</td>
</tr>
<tr>
<td></td>
<td>POST</td>
<td>Basagran</td>
<td>Basagran</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permit/Yukon</td>
<td>Classic</td>
</tr>
</tbody>
</table>

\(^a\) These applications can only be made to Roundup Ready varieties/hybrids with brands of glyphosate clearly approved for use in these varieties/hybrids.

\(^b\) Apply only in Liberty Link hybrids.
On-farm infestations of small grains are due primarily to insect-infested equipment and storage facilities and grain molds that attract fungus-feeding beetles. The best approach to this problem is to start with clean, dry grain and clean equipment and bins. Grain containing cracked kernels, weed seeds, or other foreign material tends to become infested more readily than sound, clean grain.

Bin preparation

Clean out the bin. Never put new grain on top of old grain. Remove all grain and debris from inside and outside bins well in advance of the harvest. This includes feed sacks, cardboard sheets and boxes, boards, and accumulations of grain, crust-sed grain, and dust. These products harbor the eggs, larvae, pupae, and adults of “bran bugs” and “grain moths.” Use brooms, vacuum cleaners, hoes, or other scrapers to do a thorough job. Make sure you wear an approved dust- and mold-filtering mask while cleaning bins.

Avoid storing grain near animal feeders, feed rooms, or in livestock dwellings. These areas may harbor stored grain pests. Either feed the first few bushels from the combine to livestock or discard them. The old grain left in the combine could be infested.

Patch all holes in the bin to bar entry by birds and rodents. Make sure the roof does not leak.

Empty bin treatments

After bins are emptied and cleaned, spray the inside surfaces to the point of runoff with an insecticide approximately 2 weeks prior to harvest. Apply one of the following insecticides to the walls, ceilings, roof, and floors of all bins that will be used to store small grains for more than a few weeks:

- **Centynal** (deltamethrin)
 Dilute 0.25-1.5 fl oz of Centynal insecticide to make 1 gallon of solution. Apply at a rate of 1 gal/1,000 sq ft to cover surfaces without causing dripping or runoff.

- **D-Fense** (deltamethrin)
 Dilute 0.25-1.5 fl oz of D-Fense SC insecticide to make 1 gallon of solution. Apply at a rate of 1 gal/1,000 sq ft to cover surfaces without causing dripping or runoff.

- **Diacon II** (methoprene)
 Apply Diacon II as a mist or aerosol to empty grain bins. Dilute at 1 ml (1/30 fl oz) per 1,000 sq ft of surface area or 3 ml (1/10 fl oz) per 10,000 cu ft.

- **Diacon-D IGR**
 Apply Diacon-D IGR at a rate of 1.5 oz per 1,000 sq ft of surface area. Pay particular attention to cracks, crevices, and voids where commodities may accumulate and attract pests.

- **Dryacide 100** (diatomaceous earth)
 Mix 1.5 lb of Dryacide 100 per gallon of water and apply 1.5 gallons of finished spray per 1,000 sq ft. Apply evenly for thorough coverage to the point of runoff.

- **Insecto** (diatomaceous earth)
 Apply 1 lb Insecto dust (diatomaceous earth) per 1,000 square feet to interior wall surfaces and empty storage areas.

- **Storcide II** (chlorpyrifos-methyl +deltamethrin)
 Bin applications of Storcide II should be applied only from outside the bin (see product label). Dilute 1.8 fl oz. Storcide II with water to make 1 gallon of solution. Apply finished spray at the rate of 1 gallon/1,000 square feet before storing or handling grain.

- **Suspend SC** (deltamethrin)
 Dilute 0.25-1.5 fl oz to make 1 gallon of solution. Apply at a rate of 1 gal/1,000 sq ft to cover surfaces without causing dripping or runoff.

- **Tempo SC Ultra** (cyfluthrin)
 8 mL Tempo SC Ultra per 1,000 square feet in sufficient water (about 1.5 pint/1,000 sq ft) to adequately cover the area without causing dripping or runoff (see product label). Note: Never apply Tempo directly to any grain.

Spray all cracks and crevices and around doors. The plenum beneath irremovable perforated floors can harbor many insects and is difficult to treat. While directing extra spray through the perforations will kill some of the insects in this grain debris, it will not kill enough for satisfactory control. Thus, you will either have to fumigate or remove the subfloor to clean out grain debris. Spray the outside bin walls to a height of 6 feet, and spray the ground out to a distance of 6 feet from the bin foundation.

Do not let the insecticide spray mix stand overnight; it may break down and result in poor control.
Spraying or fumigating empty bins is only a part of the program for preparing bins for harvest. Before bins are sprayed, they must be thoroughly cleaned. In addition, money spent spraying empty bins is wasted if the grain placed in the bin is not managed properly and is allowed to go out of condition.

Grain protection with insecticides (direct grain treatment)

In Wisconsin clean, dry grain suffers little, if any, damage on the farm during the first season’s storage if (1) the preceding suggestions on bin sanitation and residual sprays are followed, (2) the grain is not stored close to livestock feed or other grains that are contaminated with insects, and (3) aeration is used to cool the grain and prevent insect feeding and reproduction.

A grain protectant should be used if the grain will be held beyond June 1 of the following year. However, a grain protectant will not protect grain from insects that feed on molds, such as the foreign grain beetle. Grain moisture of 14-18% is favorable for most stored grain insects. Insects that feed on mold prefer the high moisture ranges. Thus, proper grain drying and bin aeration are integral parts of managing stored grain insects. To help bin aeration, do not overfill bins; it hinders uniform airflow during aeration and makes it harder to inspect and treat the grain. Level the grain and allow at least 8 inches between the grain surface and the tip of the bin wall.

Drying grain to 12-13% moisture is unfavorable for most grain insects and allows prolonged persistence of protectant insecticides added while the grain is being binned.

Actellic SE (pirimiphos-methyl) for corn, popcorn, and sorghum

Apply spray solution uniformly as grain enters storage according to label directions. Actellic can only be used once during the entire storage period, regardless of the method of use. Do not apply Actellic to corn or sorghum that has been previously treated with a product containing pirimiphos-methyl. Do not apply Actellic to barley, oats, rye, wheat, or soybean.

Centyval (deltamethrin) for barley, corn, oat, popcorn, rice, rye, sorghum, and wheat

Dilute with water and apply to the moving grain stream as a coarse spray to provide a concentration of 0.5 ppm of deltamethrin on the grain. For uniform treatment, use a moving grain stream. Final spray volume with water solutions is 5 gallons of liquid/1,000 bushels of grain.

D-Fense (deltamethrin) for barley, corn, oat, popcorn, rice, rye, sorghum, and wheat

Dilute with a food grade mineral or soybean oil and apply to the moving grain stream as a coarse spray to provide a concentration of 0.5 ppm of deltamethrin on the grain. Final spray volume with water solutions is 5 gallons of liquid/1,000 bushels of grain.

Diacon II and Diacon-D (methoprene) for barley, corn, oat, rice, rye, sorghum, wheat, and other commodities

Diacon II and Diacon-D are labeled as stored grain treatments. Unlike traditional insecticides, these products do not kill adult insects. This insect growth regulator interferes with the development of young insects, preventing breeding by adult beetles and moths. Apply to moving grain stream as uniformly as possible to ensure protection of the commodity. See product label for application methods and finished spray concentrations by grain type.

Dryacide 100 (diatomaceous earth) for barley, corn, oat, rice, rye, sorghum, wheat, and other commodities

Apply 1-2 lb per ton of grain during storage to prevent insect damage. Thoroughly mix Dryacide 100 with grain. Dryacide 100 can be mixed into grain going in to storage or can be applied via a layering method as described on the label.

Insecto (diatomaceous earth) for barley, corn, oat, rice, rye, sorghum, wheat, and other commodities

Apply Insecto at the rate of 1-2 lb / ton of grain at the time of storage, to protect it from further damage. After the bin is full and level, Insecto dust can be applied at a rate of 4 lb/1,000 sq ft of surface area as a protective barrier. Insecto is labeled for organic production.

Sensat (spinosad) for barley, corn, oat, sorghum, wheat, and other commodities

Consult product label for application rates to deliver 1 ppm of active ingredient to grain stream. Solution is applied at a rate of 5 gallons per 1,000 bushels of grain.

Storcide II (chlorpyrifos-methyl +deltamethrin) for barley, oat, rice, sorghum, and wheat

Dilute with water, FDA-approved food-grade mineral oil or soybean oil and apply to the moving grain stream as a coarse spray to provide a deposit of 3 ppm of chlorpyrifos-methyl and 0.5 ppm of deltamethrin on the grain (see product label). Final spray volume with oil solutions should be applied at rates given by the oil manufacturer. Spray mixture is applied at a rate of 5 gal/1,000 bushels of grain. Do not make more than one application of Storcide II to stored grain or seed. When drying grain, apply Storcide after the grain has cooled.

Grain surface treatments

(top-dressing)

Once grain is in the bin, surface treatments only are effective against insects feeding at the grain surface. Malathion is registered for such use, but the major grain surface feeder is the Indian meal moth, a species with widespread resistance to malathion. Because of this, malathion is of questionable value for such applications. The following products are suggested for use as surface treatments.

Actellic SE (pirimiphos-methyl) for corn, popcorn, and sorghum

Actellic SE may be used as a surface treatment in stored corn and sorghum and will control Indian meal moths, beetles, and weevils. Do not apply Actellic to barley, oats, rye, wheat, or soybean. Actellic can only be used once during the entire storage period.
storage period, regardless of the method of use. Mix 3.0 fl oz Actellic 5E in 2 gallons water per 1,000 sq ft of grain surface area.

Biobit HP (*Bacillus thuringiensis*) for barley, oat, popcorn, rye, sorghum, soybeans, wheat, and other commodities

Biobit works only against caterpillar pests such as Indian meal moth and almond moth; it is not effective against weevils or other beetles, or other stored product insects. Biobit can be applied as a surface treatment. Apply 0.5 lb of product in 5-10 gallons of water per 500 sq ft of grain surface area. Mix treatment into the top 4 inches.

Diacon II and Diacon-D (methoprene) for all commodities

Diacon II and Diacon-D are labeled as surface treatments and total grain treatments. This insect growth regulator prevents breeding by beetles and moths; it does not kill adult insects. Thorough coverage of surface is important. Raking top of grain mass according to label directions will enhance protection from invading insects infesting the top surfaces of the commodity.

DiPel (*Bacillus thuringiensis*) several labels for corn, small grains, soybeans, and other commodities

DiPel is a biological insecticide that contains a naturally occurring bacterial organism that kills moth larvae. It is labeled for surface treatment for control of Indian meal moth. This insecticide will not control beetles, weevils, or bran bugs. Apply 0.5 lb of product in 5-10 gallons of water per 500 sq ft of grain surface area. Mix treatment into the top 4 inches.

Dryacide 100 (diatomaceous earth) for barley, corn, oat, rice, rye, sorghum, wheat, and other commodities

As a top-dressing treatment, apply 2-3 lb of Dryacide 100 per 1,000 sq ft of grain surface area.

Insecto (diatomaceous earth) for barley, corn, oat, rice, rye, sorghum, wheat, and other commodities

Insecto can be applied as needed as a top-dressing treatment. See label for application rates. Insecto is labeled for organic production.

Sensat (spinosad) for barley, corn, oat, sorghum, wheat, and other commodities

Top dressing treatments are not as effective as treating the full grain column, but they can provide significant protection from some insects such as Indian meal moth. For each 1,000 sq ft of surface, mix 2.6 fl oz of Sensat in 2.0 gallons of water. Apply one-half of the total application amount evenly across the surface and then rake to a depth of at least 4 inches. Complete the treatment by applying the remaining half to the surface and leave undisturbed.

Indian meal moth

This insect is a problem in portions of Wisconsin. The adult (moth) does no damage, but the larvae feed in the upper few inches of the grain mass and will web the grain together. If populations are great, the surface will be crusted, protecting the larvae from surface-applied insecticides or fumigants.

This pest has developed resistance to malathion in many areas. There are a few alternatives to malathion that are specific to stored grain: dichlorvos vapor strips; Storcide II (small grains); Actellic 5E (corn and sorghum); *Bacillus thuringiensis* (corn, small grains, soybeans); dia-tomaceous earth (corn, small grains, soybeans); and spinosad (corn, small grains, soybeans).

- A preventative treatment is to suspend dichlorvos (DDVP, vapona) resin strips over the stored grain. Consult product labels to determine the appropriate number of strips for a given area. Use and follow label directions. This technique is effective against adults only. The strip must be hung before moths begin to emerge in early spring and usually must be replaced every 6 weeks. During the first season of storage, the strips should be hung immediately after small grains are binned.
- Biobit and Di Pel are biological insecticides that contain a naturally occurring bacterial organism (*Bacillus thuringiensis* subsp. Kursta-ki) that kills moth larvae when ingested. It can be used to control Indian meal moth larvae. It will not control adult moths, nor will it control weevils or beetles. Consult the product label for rates and special application instructions.

- Insecto diatomaceous earth is labeled as a surface treatment for Indian meal moth and may be used on feed grains, wheat, barley, corn, oats, and soybean. Insects that come in contact with the product are scraped by the microscopic particles. They lose their body fluids, become dehydrated, and die. This is a physical control, so insects have difficulty building up resistance.
- Sensat (spinosad) is also approved for surface treatments and can provide significant control of Indian meal moths. Consult the product label for application rates and instructions.

Before applying a grain surface treatment for Indian meal moth, remove webbing or crusted or spoiled grain. Follow application instructions for insecticides listed in the **Grain Surface Spray** section.

It may take several weeks for grain surface treatments to control an Indian meal moth infestation. You may want to hire a fumigator for faster results. If you’re keeping the grain in storage, treat the grain surface with an appropriate insecticide listed under the **Grain Surface Spray** section to prevent reinfestation once it is safe to enter the bin after fumigation.

Grain inspection

Stored grain must be inspected every 2-4 weeks from May through October and at least monthly from November-April. If infestations are detected early, they can be controlled before extensive damage occurs.

Check various areas of the grain mass with a grain probe. Sift the grain sam-
Safety precautions

Stored grain, especially flowing grain, presents many hazards. Following is a list of important safety precautions (adapted from the University of Illinois Pesticide Training Manual for Grain Facility Pest Control Applicators).

- Do not enter a bin of flowing grain.
- Do not enter a bin to break a crust or remove a blockage when unloading equipment is running, whether or not grain is flowing. Restarted flow is a hazard.
- Before entering a bin, lock out the circuit controlling the unloading equipment and post a warning so no one else starts the equipment.
- Do not enter a bin without knowledge of previous grain removal practices, especially if crusting is evident.
- Do not trust a surface crust to remain intact.
- Do not depend on a second person to start or stop equipment according to shouted instructions. Equipment noise can prevent communication. The second person may be unable to complete the task soon enough.
- When entering a bin that contains poor quality grain or when unloading history is unknown, have two workers outside the bin. The person in the bin should wear a safety rope. The companions outside the bin should be able to lift him or her out without entering the bin. One outside companion cannot do this. And having two companions present allows one to administer first aid while the other goes for help.
- Always wear a particle respirator capable of filtering fine dust and mold spores when working inside a bin; grain dust and molds are a health hazard.
- Keep children away from equipment, vehicles, and flowing grain.
- Avoid working in overfilled, peaked bins; crawling about in these bins can cause grain flows that block exits.
- Maintain proper and effective shields and guards on hazardous equipment.

Controlling established infestations

To date, most insect problems in grain stored on Wisconsin farms are the result of improper storage. The development of grain molds makes stored grain attractive to foreign and flat grain beetles. When insects are found in stored grains, you must first correct storage conditions that allow the grain to deteriorate and then determine whether the infestation warrants control. The importance of an insect infestation is determined not only by the number of insects present, but also by type of grain, insect species, time of year, grain temperature and moisture, the planned length of storage, market potential, and local elevator quality and dockage guidelines. Insect-damaged kernels may result in price discounts. Also consider that insect populations and their damage can increase rapidly.

Table 7-1 lists the Federal Grain Inspection Service standards for grain infestation that will be in effect until further notice, but local elevators usually enforce more stringent standards.

If you find insects in stored grain, consider several possible management options. Sometimes the most profitable option may be to clean and sell the grain immediately without any chemical treatment. Immediate sale is especially appropriate where early stages of insect infestations are detected before insect numbers reach elevator dockage or discount levels.

Sometimes insect problems are limited primarily to the surface or central core of stored grain. If Indian meal moth is the only problem, you can control light infestations by using Actellic (corn and sorghum), Bacillus thuringiensis (corn, small grains, soybeans), diatomaceous earth (corn, small grains, soybeans); or spinosad (corn, small grains, soybeans) in conjunction with dichlorvos strips as outlined in the section on the Indian meal moth. Where abundant webbing indicates a severe infestation, rake webbing from the surface before treatment; fumigation may be necessary in this situation. Where bran bugs are the problem and are confined primarily to a central core of fine material, remove one or two loads of grain to extract that core, allowing safe storage of the remaining grain.

Where infested grain can be moved to a clean bin, transfer and treatment with a protectant insecticide is recommended. If possible, use a grain cleaner during the transfer process. Protectant insecticides will not immediately kill immature
insects within grain kernels, but residues eventually provide control and protect against reinfestation for a period dependent upon grain moisture and temperature.

Fumigation

Infested grain that cannot be treated successfully in any other way should be fumigated. Fumigation of farm-stored grain is difficult, hazardous, and requires special training and equipment.

You must receive supplemental certification to apply fumigants. If you are a certified private applicator, you must receive additional certification in the **Agricultural Fumigation sub-category**. Commercial applicators must be certified in the **Space and Commodity Fumigation category**.

All fumigants are extremely toxic and dangerous if improperly used. Use them in strict accordance with label directions and follow all safety precautions. Failure to follow all label instructions is unsafe and illegal.

Always work in pairs; an observer should be present outside the bin.

Labeling requires the use or availability of a self-contained breathing apparatus for respiratory protection during one or more stages of the fumigation process. Fumigators also must measure fumigant gas concentrations to determine that the fumigant has dissipated sufficiently before unprotected persons can enter the fumigated space. Follow specific label directions concerning respiratory protection equipment and gas detection devices. If you are uncertain about the safe use of a fumigant, contact the manufacturer for detailed instructions.

These steps are suggested for fumigation:

1. Level the grain; the grain surface must be 8 inches or more below the bin lip to allow good aeration plus sufficient space for inspection and treatment. Remove or break up any caked or crusted area.
2. Use tape and plastic sheeting to thoroughly seal all cracks and holes in the bin, including eaves, hatches, side doors, unloading auger shaft, and fan openings. Leave only the necessary access openings to seal after fumigant application.
3. Fumigate on a still day when the grain temperature is above 60°F. Wind causes rapid gas leakage and will reduce the effectiveness of the fumigation.

 The method of application will vary with the type of fumigant, commodity, and storage facility. Apply the product at labeled rates and follow all safety precautions.

 Phosphine. This is available in solid formulations of aluminum or magnesium phosphate and is used for fumigation of insect-infested grain. When exposed to heat and moisture, the formulations release phosphine, a highly toxic gas. Even moisture from hands can activate the pellets, so neoprene or cotton gloves must be used.

4. Seal all access doors to the bin. Place warning signs as directed by the fumigant label.
5. Keep the bin closed for at least 72 hours before airing out bins following aluminum phosphide fumigation. Do not enter the bin during or after fumigation until gases have been thoroughly removed by aeration.

Fumigated grain must be aerated thoroughly before processing or feeding. Once it is aired out, fumigated grain may become reinfested. Surface application of protectant insecticide and/or placement of dichlorvos resin strips should follow fumigation if storage is to continue. If the infestation was a result of poor grain storage practices, these conditions must be corrected.
APPENDIX
Table 8-1. Herbicide products and related information

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation</th>
<th>Active ingredient(s)</th>
<th>Site of inhibition</th>
<th>Manufacturer</th>
<th>RUP</th>
<th>Signal word</th>
<th>REI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D Amine 4, Shredder</td>
<td>3.8L</td>
<td>2,4-D</td>
<td>auxin</td>
<td>WinField</td>
<td>danger</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>2,4-D LV4, Shredder</td>
<td>3.8L</td>
<td>2,4-D</td>
<td>auxin</td>
<td>WinField</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>AAtrex</td>
<td>4L, 90DF</td>
<td>atrazine</td>
<td>photosystem II</td>
<td>Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>12 hr*</td>
</tr>
<tr>
<td>Accent Q</td>
<td>54.5DF</td>
<td>nicosulfonyl + safener</td>
<td>ALS + —</td>
<td>DuPont</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Acuron</td>
<td>23+11+3</td>
<td>s-metolachlor + atrazine + mesotrione + bicyclopyrone</td>
<td>seedling shoot + photosystem II + pigment +</td>
<td>Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Acuron Flexi</td>
<td>31+3.5+0.9</td>
<td>s-metolachlor + mesotrione + bicyclopyrone</td>
<td>seedling shoot + pigment +</td>
<td>Syngenta</td>
<td>no</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Affinity BroadSpec</td>
<td>25+25SG</td>
<td>thifensulfuron + tribenuron</td>
<td>ALS + ALS</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Afforia</td>
<td>50.8DG</td>
<td>tribenuron + thifensulfuron + flumioxazin</td>
<td>ALS + PPO</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Anthem</td>
<td>2.15SE</td>
<td>pyroxasulfone + fluthiacet-methyl</td>
<td>seedling shoot</td>
<td>PPO</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Anthem Flex</td>
<td>3.7+0.3 SE</td>
<td>pyroxasulfone + carfentrazone</td>
<td>seedling shoot</td>
<td>PPO</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>45+1.4 SC</td>
<td>pyroxasulfone + fluthiacet-methyl</td>
<td>seedling shoot</td>
<td>PPO</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>42+5+0.2 se</td>
<td>atrazine + pyroxasulfone + fluthiacet-methyl</td>
<td>Photosystem II + seedling shoot</td>
<td>PPO</td>
<td>FMC</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Assure II</td>
<td>0.88EC</td>
<td>quinalofop</td>
<td>ACCase</td>
<td>DuPont</td>
<td>danger</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Atrazine, others</td>
<td>90DF, 4L</td>
<td>atrazine</td>
<td>photosystem II</td>
<td>several</td>
<td>yes</td>
<td>caution</td>
<td>12 hr*</td>
</tr>
<tr>
<td>Authority Assist</td>
<td>3.33+0.67S</td>
<td>sulfentrazone + imazethapyr</td>
<td>PPO + ALS</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Authority Elite</td>
<td>7L</td>
<td>sulfentrazone + s-metolachlor</td>
<td>PPO + seedling shoot</td>
<td>FMC</td>
<td>caution</td>
<td>24 hr*</td>
<td></td>
</tr>
<tr>
<td>Authority First</td>
<td>62.1+7.9DF</td>
<td>sulfentrazone + cloransulam</td>
<td>PPO + ALS</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Authority Maxx</td>
<td>sulfentrazone + chlorimuron</td>
<td>PPO + ALS</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authority MITZ</td>
<td>0.18+0.27DF</td>
<td>sulfentrazone + metribuzin</td>
<td>PPO + photosystem II</td>
<td>FMC</td>
<td>danger</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Autumn Super 51 WDG</td>
<td>0.06+0.45DF</td>
<td>iodosulfuron + thiencarbazone</td>
<td>ALS + ALS</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>2L</td>
<td>Isoxaflutole</td>
<td>Pigment inhibitor</td>
<td>Bayer</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Banvel</td>
<td>4S</td>
<td>dicamba</td>
<td>auxin</td>
<td>Arysta</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Basagran</td>
<td>4S</td>
<td>bentazon</td>
<td>photosystem II</td>
<td>Arysta</td>
<td>caution</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Basis Blend</td>
<td>20+100DF</td>
<td>rimsulfuron + thifensulfuron</td>
<td>ALS + ALS</td>
<td>DuPont</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Bicep II Magnum</td>
<td>2.4+3.1L</td>
<td>s-metolachlor + atrazine + safener</td>
<td>seedling shoot + photosystem II +</td>
<td>Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Bicep Lite II Magnum</td>
<td>3.33+2.67L</td>
<td>s-metolachlor + atrazine + safener</td>
<td>seedling shoot + photosystem II +</td>
<td>Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Boundary 6.5</td>
<td>5.25+1.25L</td>
<td>s-metolachlor + metribuzin</td>
<td>seedling shoot + photosystem II</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr*</td>
<td></td>
</tr>
<tr>
<td>Broadaxe XC</td>
<td>7.6+68</td>
<td>sulfentrazone + s-metolachlor</td>
<td>PPO + seedling shoot</td>
<td>Syngenta</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Bu曲折ril</td>
<td>4EC, 2EC</td>
<td>bromoxynil</td>
<td>photosystem II</td>
<td>Bayer</td>
<td>warning</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Bullet</td>
<td>2.5+1.5ME</td>
<td>alachlor + atrazine</td>
<td>seedling shoot + photosystem II</td>
<td>Monsanto</td>
<td>yes</td>
<td>caution</td>
<td>12 hr*</td>
</tr>
<tr>
<td>Butyrac 200</td>
<td>2S</td>
<td>2,4-DB amine</td>
<td>auxin</td>
<td>Albaugh</td>
<td>danger</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Cadet</td>
<td>0.91EC</td>
<td>fluthiacet</td>
<td>PPO</td>
<td>FMC</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Callisto</td>
<td>4L</td>
<td>mesotrione</td>
<td>pigment</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr*</td>
<td></td>
</tr>
</tbody>
</table>

See endnotes following table 8-3.
Table 8-1. Herbicide products and related information (continued)

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulationa,b</th>
<th>Active ingredient(s)</th>
<th>Site of inhibitionc</th>
<th>Manufacturer</th>
<th>RUPa</th>
<th>Signal word</th>
<th>REIa,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callisto GT</td>
<td>4.18L</td>
<td>mesotrione + glyphosate</td>
<td>EPSPS + pigment</td>
<td>Syngenta</td>
<td></td>
<td>caution</td>
<td>24 hr</td>
</tr>
</tbody>
</table>
| Callisto Xtra | 0.5 + 3.2L | mesotrione + atrazine | pigment + photosys-

tem II | Syngenta | | caution | 12 hr |
Canopy Blend	64.3 + 10.7DF	metribuzin + chlorimuron	photosystem II + ALS	DuPont		caution	12 hr
Canopy EX	22.7 + 6.8DF	chlorimuron + tribenuron	ALS + ALS	DuPont		caution	12 hr
Capreno	0.57 + 2.88L	thienzardzalone + tembotrione + safener	ALS + pigment	Bayer		caution	12 hr
Chaparral	62.1 + 9.5DF	aminopyralid + metsulfuron	auxin + ALS	Dow		warning	48 hr
Chateau	51WG	flumioxazin		PPO		caution	12 hr
Cimarron Max	Part A: 60DF	metsulfuron	ALS	DuPont		danger	48 hr
	Part B: 1 + 2.87S	dicamba + 2,4-D		DuPont		danger	48 hr
Cimarron Plus	48 + 15DF	metsulfuron + chlorsulfuron	ALS + ALS	DuPont		caution	4 hr
Cimarron X-tra	30 + 37.5DF	metsulfuron + chlorsulfuron	ALS + ALS	DuPont		caution	4 hr
Clarity	4S	dicamba	auxin	BASF		caution	24 hr
Classic	25DF	chlorimuron	ALS	DuPont		caution	12 hr
Cobra	2EC	lactofen		PPO		danger	12 hr
Corvis	2.63L	isoxaflutole + thienzardzalone + safener	Pigment inhibitor	Bayer	yes	caution	12 hr
Crossbowf	1 + 2EC	triclopyr + 2,4-D ester	auxin + auxin	many		caution	——
Curtail	0.38S + 2.0S	clopyralid + 2,4-D amine	auxin + auxin	Dow		danger	48 hr
Degree XTRA	2.7 + 1.34 ME	acethicon + atrazine + safener	seedling shoot + photosystem II	Monsanto	yes	caution	12 hr
Diflexx	4L	dicamba	auxin	Bayer		caution	24 hr
Diflexx Duo	4L	dicamba + tembotrione	auxin + pigment inhibitor	Bayer		caution	24 hr
Dual II Magnum	7.64EC	s-metolachlor + safener	seedling shoot +	Syngenta		caution	24 hr
Enlist Duo	22 + 24 L	glyphosate + 2,4-D choline	EPSPS + auxin	Dow		warning	48 hr
Enlite	2.85 + 36.21 + 8.88DF	chlorimuron + flumioxazin + thifensulfuron	ALS + PPO ALS	DuPont		caution	12 hr
Envive	9.2 + 29.2 + 2.9DF	chlorimuron + flumioxazin + thifensulfuron	ALS + PPO ALS	DuPont		caution	12 hr
Eptam	7EC, 20G	EPTC	seedling shoot	Syngenta		caution	12 hr
Escort	60DF	metsulfuron	ALS	DuPont		caution	4 hr
Express	50DS	tribenuron	ALS	DuPont		caution	12 hr
Extreme	0.17 + 2S	imazethapyr + glyphosate	ALS + EPSPS	BASF		warning	48 hr
Fierce	33.5 + 42.5	flumioxazin + pyroxasulfone	PPO + seedling shoot	Valent		caution	12 hr
Fierce XLT	24.6 + 6.7 + 31.2	flumioxazin + chlorimuron + pyroxasulfone	PPO + ALS + seedling shoot	Valent		caution	12 hr
FirstRate	84DF	cloransulam	ALS	Dow		caution	12 hr
Flexstar	1.88S	fomesafen	PPO	Syngenta		warning	24 hr
Flexstar GT 3.5	0.56 + 2.26EC	fomesafen + glyphosate	PPO + EPSPS	Syngenta		caution	24 hr
ForeFront HL	0.417 + 3.335C	aminopyralid + 2,4-D	auxin + auxin	Dow		danger	48 hr
Fulltime NXT	2.7 + 1.34	acethicon + atrazine	seedling shoot + photosystem II	Dow		caution	12 hr
Fusilade DX	2EC	fluazifop	ACCase	Syngenta		caution	12 hr

See endnotes following table 8-3
Table 8-1. Herbicide products and related information (continued)

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation*</th>
<th>Active ingredient(s)</th>
<th>Site of inhibition†</th>
<th>Manufacturer</th>
<th>RUPa</th>
<th>Signal word</th>
<th>REIa,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion</td>
<td>2 + 0.66EC</td>
<td>fluazifop + fenoxaprop</td>
<td>ACCase + ACCase</td>
<td>Syngenta</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Gangster</td>
<td>FR: 840DF</td>
<td>cloransulam</td>
<td>ALS</td>
<td>Valent</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>2.25 + 2.75L</td>
<td>dimethenamid-P + atrazine</td>
<td>seedling shoot + photosystem II</td>
<td>BASF</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>2S</td>
<td>paraquat</td>
<td>photosystem I</td>
<td>Syngenta</td>
<td>yes</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Guardsman Max</td>
<td>1.7 + 3.3L</td>
<td>dimethenamid-P + atrazine</td>
<td>seedling shoot + photosystem II</td>
<td>BASF</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Halex GT</td>
<td>2.09 + 2.09 + 0.209L</td>
<td>s-metolachlor + glysophate + mesotrione seedling shoot + EPSPS+ pigment</td>
<td>Syngenta</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony Extra</td>
<td>16.7 + 33.35G</td>
<td>tribenuron + thifensulfuron</td>
<td>ALS</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Harmony SG</td>
<td>50SG</td>
<td>thifensulfuron</td>
<td>ALS</td>
<td>DuPont</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Harness</td>
<td>7EC</td>
<td>acetochlor + safener</td>
<td>seedling shoot + —</td>
<td>Monsanto</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Harness XTRA</td>
<td>4.3 + 1.7L</td>
<td>acetochlor + atrazine + safener</td>
<td>seedling shoot + photosystem II + —</td>
<td>Monsanto</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Harness XTRA 5.6L</td>
<td>3.1 + 2.5L</td>
<td>acetochlor + atrazine + safener</td>
<td>seedling shoot + photosystem II + —</td>
<td>Monsanto</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>18.5 + 50WG</td>
<td>flumetsulam + ciprylalid</td>
<td>ALS+ auxin</td>
<td>Dow</td>
<td>warning</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Huskie</td>
<td>0.3 + 1.7SEC</td>
<td>pyrasulfotole+ bromoxynil + safener pigment + photosystem II + —</td>
<td>Bayer</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huskie Complete</td>
<td>0.5 + 2.8 + 22.6</td>
<td>thiencarbazone + pyrasulfo- tole+ bromoxynil</td>
<td>ALS + pigment + photosystem II</td>
<td>Bayer</td>
<td>danger</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td>2.8L</td>
<td>topiramazone</td>
<td>pigment</td>
<td>Amvac</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Instigate</td>
<td>4.17 + 41.67WC</td>
<td>rimsulfuron + mesotrione</td>
<td>ALS + pigment</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>INTRRO</td>
<td>4EC</td>
<td>alachlor</td>
<td>seedling shoot</td>
<td>Monsanto</td>
<td>yes</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Journey</td>
<td>0.75 + 1.5S</td>
<td>imazapic + glyphosate</td>
<td>ALS+ EPSPS</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Keystone NXT</td>
<td>3.1 + 2.5L</td>
<td>acetochlor + atrazine + safener</td>
<td>seedling shoot + photosystem II + —</td>
<td>Dow</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>4.3 + 1.7L</td>
<td>acetochlor + atrazine + safener</td>
<td>seedling shoot + photosystem II + —</td>
<td>Dow</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Lariat</td>
<td>2.5 + 1.5L</td>
<td>alachlor + atrazine</td>
<td>seedling shoot + photosystem II</td>
<td>Monsanto</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Laudis</td>
<td>3.5L</td>
<td>tembotrione + safener</td>
<td>pigment + —</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>2.34S</td>
<td>glufosinate</td>
<td>GS</td>
<td>Bayer</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Lorox</td>
<td>50DF</td>
<td>linuron</td>
<td>photosystem II</td>
<td>Griffin</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>2.49 + 0.935 + 0.249L</td>
<td>s-metolachlor + atrazine + mesotrione seedling shoot + photosystem II + pigment</td>
<td>Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Marvel</td>
<td>0.117 + 2.883EC</td>
<td>fluthiacet-methyl+ fomesafen</td>
<td>PPO+PPO</td>
<td>FMC</td>
<td>warning</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>MCPA Amine</td>
<td>3.7L</td>
<td>MCPA</td>
<td>auxin</td>
<td>WinField</td>
<td>danger</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>MCPA LV4 Ester</td>
<td>3.7L</td>
<td>MCPA</td>
<td>auxin</td>
<td>Nufarm</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>75DF</td>
<td>metribuzin</td>
<td>photosystem II</td>
<td>MANA</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>2.0S</td>
<td>aminopyralid</td>
<td>auxin</td>
<td>Dow</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>NorthStar</td>
<td>7.5 + 39.9DF</td>
<td>primisulfuron + dicamba</td>
<td>ALS + auxin</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>OpTill</td>
<td>17.8 + 50.2WG</td>
<td>saflufenacil + imazethapyr</td>
<td>PPO + ALS</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
</tbody>
</table>

See endnotes following table 8-3

Continued on next page
<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulationa,b</th>
<th>Active ingredient(s)</th>
<th>Site of inhibitionc</th>
<th>Manufacturer</th>
<th>RUPd</th>
<th>Signal word</th>
<th>REIh,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpTill Pro</td>
<td>50WG + 6EC</td>
<td>saflufenacil + imazethapyr + dimethenamid</td>
<td>ALS + PPO + seedling shoot</td>
<td>BASF</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Option</td>
<td>35DF</td>
<td>foramsulfuron + safener</td>
<td>ALS + —</td>
<td>Bayer</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Orion</td>
<td>0.033 + 2.34S</td>
<td>florasulam + MCPA</td>
<td>ALS + auxin</td>
<td>Syngenta</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Outlook</td>
<td>6EC</td>
<td>dimethenamid-P</td>
<td>seedling shoot</td>
<td>BASF</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Overdrive</td>
<td>50 + 20DS</td>
<td>dicamba + diflufenopyr</td>
<td>auxin + auxin + synergist</td>
<td>BASF</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Permit</td>
<td>75DF</td>
<td>halosulfuron</td>
<td>ALS</td>
<td>Gowan</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Phoenix</td>
<td>2EC</td>
<td>lactofen</td>
<td>PPO</td>
<td>Valent</td>
<td></td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Poas Plus</td>
<td>1.5EC</td>
<td>sethoxydim</td>
<td>ACCase</td>
<td>BASF</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Prefix</td>
<td>4.34 + 0.95EC</td>
<td>s-metolachlor + fomesafen</td>
<td>seedling shoot + PPO</td>
<td>Syngenta</td>
<td></td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Princep</td>
<td>90DF, 4L</td>
<td>simazine</td>
<td>photosystem II</td>
<td>Syngenta</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>3.8ME</td>
<td>pendimethalin</td>
<td>seedling root</td>
<td>BASF</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Pursuit</td>
<td>25, 70DF</td>
<td>imazethapyr</td>
<td>ALS</td>
<td>BASF</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Python</td>
<td>80DF</td>
<td>flumetsulam</td>
<td>ALS</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Raptor</td>
<td>1EC</td>
<td>imazamox</td>
<td>ALS</td>
<td>BASF</td>
<td></td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Realm Q</td>
<td>7.5 + 31.25DF</td>
<td>rimsulfuron + mesotrione + safener</td>
<td>ALS + pigment + —</td>
<td>DuPont</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Remedy Ultra</td>
<td>60.5 L</td>
<td>triclopyr</td>
<td>auxin</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>Until dry</td>
</tr>
<tr>
<td>Resicore</td>
<td>31 + 3.3 + 2.7 L</td>
<td>acetochlor + mesotrione + clopyralid</td>
<td>Seedling shoot + pigment + auxin</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Resolve Q</td>
<td>18.4 + 40DF</td>
<td>rimsulfuron + thifensulfuron + safener</td>
<td>ALS + ALS + —</td>
<td>DuPont</td>
<td></td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Resource</td>
<td>0.86EC</td>
<td>flumiclorac</td>
<td>PPO</td>
<td>Valent</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Revulin Q</td>
<td>14 + 37</td>
<td>nicosulfuron + mesotrione</td>
<td>ALS + pigment</td>
<td>DuPont</td>
<td></td>
<td>caution</td>
<td>12</td>
</tr>
<tr>
<td>Roundup PowerMAX</td>
<td>4.5S</td>
<td>glyphosate</td>
<td>EPSPS</td>
<td>Monsanto</td>
<td></td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Select</td>
<td>2EC</td>
<td>clethodim</td>
<td>ACCase</td>
<td>Valent</td>
<td></td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Select Max</td>
<td>0.97EC</td>
<td>clethodim</td>
<td>ACCase</td>
<td>Valent</td>
<td></td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Sequence</td>
<td>2.25 + 3EC</td>
<td>glyphosate + s-metolachlor</td>
<td>EPSPS + seedling shoot</td>
<td>Syngenta</td>
<td></td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Sharpen</td>
<td>2.85SC</td>
<td>saflufenacil</td>
<td>PPO</td>
<td>BASF</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Solstice</td>
<td>4L</td>
<td>mesotrione + fluthiacet</td>
<td>PPO + pigment</td>
<td>FMC</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Sonic</td>
<td>62.1 + 7.9DF</td>
<td>sulfentrazone + cloransulam</td>
<td>PPO + ALS</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Spartan</td>
<td>4F</td>
<td>sulfentrazone</td>
<td>PPO</td>
<td>FMC</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Spike®</td>
<td>20G</td>
<td>tebuthiuron</td>
<td>photosystem II</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>——</td>
</tr>
<tr>
<td>Starane</td>
<td>1.5EC</td>
<td>fluroxypyr</td>
<td>auxin</td>
<td>Dow</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Status</td>
<td>40 + 16DF</td>
<td>dicamba + diflufenopyr + safener</td>
<td>auxin + auxin + synergist + —</td>
<td>BASF</td>
<td></td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Steadfast Q</td>
<td>25.2 + 12.5DF</td>
<td>nicosulfuron + rimsulfuron + safener</td>
<td>ALS + ALS + —</td>
<td>DuPont</td>
<td></td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Stinger</td>
<td>3S</td>
<td>clopyralid</td>
<td>auxin</td>
<td>Dow</td>
<td></td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>SureStart II</td>
<td>3.75 + 0.38 + 0.12L</td>
<td>acetochlor + clopyralid + flumetsulam</td>
<td>seedling shoot + auxin + ALS</td>
<td>Dow</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Surpass</td>
<td>6.4EC</td>
<td>acetochlor + safener</td>
<td>seedling shoot + —</td>
<td>Dow</td>
<td></td>
<td>warning</td>
<td>12 hr</td>
</tr>
</tbody>
</table>

See endnotes following table 8-3
<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation</th>
<th>Active ingredient(s)</th>
<th>Site of inhibition</th>
<th>Manufacturer</th>
<th>RUP</th>
<th>Signal word</th>
<th>REI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surveil</td>
<td>12 + 36</td>
<td>cloransulam + flumioxazin</td>
<td>ALS + PPO</td>
<td>Dow</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Synchrony XP</td>
<td>21.5 + 6.9DF</td>
<td>chlorimuron + thifensulfuron</td>
<td>ALS + ALS</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Touchdown</td>
<td>3, 4.17, 5S</td>
<td>glyphosate</td>
<td>EPSPS</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Treflan</td>
<td>4E, 10G</td>
<td>trifluralin</td>
<td>seedling root</td>
<td>Dow</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>3.75 + 0.38+0.12L</td>
<td>acetochlor + cloypradil + flumetsulam</td>
<td>seedling shoot + auxin</td>
<td>Monsanto</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Trivence</td>
<td>61.3DG</td>
<td>chlorimuron + flumioxazin + metobuzin</td>
<td>ALS + photosystem II + PPO</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>2S</td>
<td>acifluorfen</td>
<td>PPO</td>
<td>United Phosphorus</td>
<td>danger</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Valor SX</td>
<td>51DF</td>
<td>flumioxazin</td>
<td>PPO</td>
<td>Valen</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Valor XLT</td>
<td>30 + 10.3DF</td>
<td>flumioxazin + chlorimuron</td>
<td>PPO + ALS</td>
<td>Valen</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Velpar</td>
<td>75DF, 2S</td>
<td>hexazinone</td>
<td>photosystem II</td>
<td>DuPont</td>
<td>danger</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Verdict</td>
<td>0.57 + 5EC</td>
<td>saflufenacil + dimethenamid-P</td>
<td>PPO + seedling shoot</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Vida</td>
<td>0.208EC</td>
<td>pyraflufen</td>
<td>PPO</td>
<td>Gowan</td>
<td>danger</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Warrant</td>
<td>3CS</td>
<td>acetochlor</td>
<td>seedling shoot</td>
<td>Monsanto</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Warrant Ultra</td>
<td>2.8 + 0.6L</td>
<td>acetochlor + fomesafen</td>
<td>seedling shoot</td>
<td>Monsanto</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Weedmaster</td>
<td>2.87 + 1S</td>
<td>2,4-D amine + dicamba</td>
<td>auxin auxin</td>
<td>BASF</td>
<td>danger</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Wolverine Advanced</td>
<td>0.4 + 0.13 + 1.5 L</td>
<td>fenoxaprop + pyrasulfate + bromoxynil</td>
<td>Lipid inhibitor + pigment + photosystem II</td>
<td>Bayer</td>
<td>danger</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Yukon</td>
<td>12.5 + 50DF</td>
<td>halosulfuron + dicamba</td>
<td>ALS + auxin</td>
<td>Gowan</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Zemax</td>
<td>3.34 + 0.33L</td>
<td>s-metolachlor + mesotrione</td>
<td>seedling shoot + pigment</td>
<td>Syngenta</td>
<td>warning</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Zidua</td>
<td>85DF</td>
<td>pyroxasulfate</td>
<td>seedling shoot</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
</tbody>
</table>

See endnotes following table 8-3
Table 8-2. Insecticide products and related information

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulationa,b</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>RUPc</th>
<th>Signal word</th>
<th>REId</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acephate 90 Prill</td>
<td>90% prill</td>
<td>acenthe</td>
<td>ADAMA</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Actellicg</td>
<td>5EC</td>
<td>pirimiphos-methyl</td>
<td>Winfield</td>
<td>danger</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Alias</td>
<td>4F</td>
<td>lambda-systhroid</td>
<td>ADAMA</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Ambush I</td>
<td>2EC</td>
<td>permethrin</td>
<td>Amvac</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Asana XL</td>
<td>0.66EC</td>
<td>esfenvalerate</td>
<td>Valent</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Avicta Complete Corn</td>
<td>FS</td>
<td>abamectin + thiamethoxam</td>
<td>Syngenta</td>
<td>yes</td>
<td>warning 48 hr</td>
<td></td>
</tr>
<tr>
<td>Aztec 2.1G</td>
<td>2.1G</td>
<td>tebupiramphos + cyfluthrin</td>
<td>Amvac, Bayer</td>
<td>yes</td>
<td>warning 48 hr</td>
<td></td>
</tr>
<tr>
<td>Aztec 4.67G</td>
<td>4.67G</td>
<td>tebupiramphos + cyfluthrin</td>
<td>Amvac, Bayer</td>
<td>yes</td>
<td>warning 48 hr</td>
<td></td>
</tr>
<tr>
<td>Aztec HC</td>
<td>8.9G</td>
<td>tebupiramphos, cyfluthrin</td>
<td>Amvac</td>
<td>yes</td>
<td>warning 48 hr</td>
<td></td>
</tr>
<tr>
<td>Bacillus thuringiensis</td>
<td>several</td>
<td>Bacillus thuringiensis</td>
<td>Several</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Baythroid XL</td>
<td>1EC</td>
<td>beta-cyfluthrin</td>
<td>Bayer</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Belay</td>
<td>2.13SC</td>
<td>clothianidin</td>
<td>Valent</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Belt 4SC</td>
<td>4SC</td>
<td>flubendiamide</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Besiege</td>
<td>0.835 + 0.417 SC</td>
<td>chlorantraniliprole + lambda-cyhalothrin</td>
<td>Syngenta</td>
<td>yes</td>
<td>warning 24 hr</td>
<td></td>
</tr>
<tr>
<td>Bifenture LFC</td>
<td>1.5 LFC</td>
<td>bifenthrin</td>
<td>UPI</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Biobit</td>
<td>58.2 WP</td>
<td>Bacillus thuringiensis</td>
<td>Valent</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Brigade 2EC</td>
<td>2EC</td>
<td>bifenthrin</td>
<td>FMC</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Capture 1.5 LFR</td>
<td>1.5LFR</td>
<td>bifenthrin</td>
<td>FMC</td>
<td>yes</td>
<td>warning 12 hr</td>
<td></td>
</tr>
<tr>
<td>Capture 3Rive 3D</td>
<td>1.6L</td>
<td>bifenthrin</td>
<td>FMC</td>
<td>yes</td>
<td>caution 12 hr</td>
<td></td>
</tr>
<tr>
<td>Centynal</td>
<td>4.75</td>
<td>deltamethrin</td>
<td>Wellmark</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cobalt Advanced</td>
<td>2.5 + 0.129EC</td>
<td>chlorpyrifos + lambda-cyhalothrin</td>
<td>Dow</td>
<td>yes</td>
<td>warning 24 hr</td>
<td></td>
</tr>
<tr>
<td>Comite 6.55EC</td>
<td>6.55EC</td>
<td>propargite</td>
<td>Chemtura</td>
<td>yes</td>
<td>danger 13 days</td>
<td></td>
</tr>
<tr>
<td>Coragen 1.67SC</td>
<td>1.67SC</td>
<td>chlorantraniliprole</td>
<td>DuPont</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Counter 20G Lock’n Loadh</td>
<td>20G</td>
<td>terbufos</td>
<td>Amvac</td>
<td>yes</td>
<td>danger 48 hr</td>
<td></td>
</tr>
<tr>
<td>Counter 20G SmartBoxh</td>
<td>20G</td>
<td>terbufos</td>
<td>Amvac</td>
<td>yes</td>
<td>danger 48 hr</td>
<td></td>
</tr>
<tr>
<td>Cruiser 5FS</td>
<td>5FS</td>
<td>thiamethoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Cruiser Maxx Cereals</td>
<td>1 gallon contains 0.26 lbs ai of thiamethoxam</td>
<td>thiamethoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Deadline M-Ps</td>
<td>4% bait</td>
<td>metaldehyde</td>
<td>AMVAC</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Declare 1.25CS</td>
<td>1.25CS</td>
<td>gamma-cyhalothrin</td>
<td>Cheminova</td>
<td>yes</td>
<td>caution 24 hr</td>
<td></td>
</tr>
<tr>
<td>Delta Gold 1.5EC</td>
<td>1.5EC</td>
<td>deltamethrin</td>
<td>Winfield</td>
<td>yes</td>
<td>danger 12 hr</td>
<td></td>
</tr>
<tr>
<td>D-Fense</td>
<td>4.75 SC</td>
<td>deltamethrin</td>
<td>ADAMA</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dicon II IGR</td>
<td>33.6 EC</td>
<td>methoprene</td>
<td>Wellmark</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Diacon-D</td>
<td>0.8 D</td>
<td>methoprene</td>
<td>Wellmark</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Dimethoate (several)</td>
<td>several</td>
<td>dimethoate</td>
<td>several</td>
<td>warning</td>
<td>48 hr</td>
<td></td>
</tr>
<tr>
<td>Dipel</td>
<td>54% DF</td>
<td>Bacillus thuringiensis</td>
<td>Valent</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Dryacide 100</td>
<td>100 D</td>
<td>diatomaceous earth</td>
<td>Winfield</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

See endnotes following table 8-3
Table 8-2. Insecticide products and related information (continued)

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulationa,b</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>RUPa</th>
<th>Signal word</th>
<th>REIh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endigo ZC</td>
<td>1.18 + 0.88ZC</td>
<td>thiamethoxam + lambda-cyhalothrin</td>
<td>Syngenta</td>
<td>yes</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Ethos XB</td>
<td>1.5 LFC (bifenthrin)</td>
<td>bifenthrin + Bacillus amyloliquefaciens strain D747</td>
<td>FMC</td>
<td>yes</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Fanfare</td>
<td>EC, & ES</td>
<td>bifenthrin</td>
<td>ADAMA</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Fastac EC</td>
<td>0.83EC</td>
<td>alpha-cypermethrin</td>
<td>BASF</td>
<td>yes</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Force 3G</td>
<td>3G</td>
<td>tefluthrin</td>
<td>Amvac, Syngenta</td>
<td>yes</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Force CS</td>
<td>2.1CS</td>
<td>tefluthrin</td>
<td>Syngenta</td>
<td>yes</td>
<td>warning</td>
<td>48 hr</td>
</tr>
<tr>
<td>Gauch 600</td>
<td>5F</td>
<td>imidacloprid</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Hero</td>
<td>1.24EC</td>
<td>zeta-cypermethrin + bifenthrin</td>
<td>FMC</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Imidan 70W</td>
<td>70W</td>
<td>phosmet</td>
<td>Gowan</td>
<td>warning</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Insecto</td>
<td>90W</td>
<td>diatomaceous earth</td>
<td>Natural INSECTO Products</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Intrepid 2F</td>
<td>2F</td>
<td>methoxynitroazide</td>
<td>Dow</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>IronFist</td>
<td>1.0 + 0.8L</td>
<td>acetamiprid + bifenthrin</td>
<td>Gowan</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Justice</td>
<td>Bait</td>
<td>sodium ferric ETA</td>
<td>Engage Agro</td>
<td>caution</td>
<td>0 hr</td>
<td></td>
</tr>
<tr>
<td>Kernel Guard Supreme</td>
<td>dry planter box seed treatment</td>
<td>permethrin</td>
<td>Chemtura</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Lannate LV</td>
<td>2.4LV</td>
<td>methomyl</td>
<td>DuPont</td>
<td>yes</td>
<td>danger</td>
<td>48 hr</td>
</tr>
<tr>
<td>Lannate SP</td>
<td>90SP</td>
<td>methomyl</td>
<td>DuPont</td>
<td>yes</td>
<td>danger</td>
<td>48 hr</td>
</tr>
<tr>
<td>Leverage 360</td>
<td>2.75E</td>
<td>imidacloprid + cyfluthrin</td>
<td>Bayer</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Lorsban 15G</td>
<td>15G</td>
<td>chlorpyrifos</td>
<td>Dow</td>
<td>caution</td>
<td>24 hr</td>
<td></td>
</tr>
<tr>
<td>Lorsban Advanced</td>
<td>3.755E</td>
<td>chlorpyrifos</td>
<td>Dow</td>
<td>yes</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Malathion</td>
<td>several</td>
<td>malathion</td>
<td>several</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Metaldehyde bait (several)</td>
<td>pellets</td>
<td>metaldehyde</td>
<td>several</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Mustang</td>
<td>1.5 EC</td>
<td>zeta-cypermethrin</td>
<td>FMC</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Mustang Maxx</td>
<td>0.8EC</td>
<td>zeta-cypermethrin</td>
<td>FMC</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Nipsit INSIDE</td>
<td>SFS</td>
<td>clothianidin</td>
<td>Valent</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Nipsit SUITE Cereals</td>
<td>0.256 + 0.077 + 0.038FS</td>
<td>clothianidin + metalaxyl + metconazole</td>
<td>Valent</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Oberon 2SC</td>
<td>2SC</td>
<td>spiromesifen</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Oberon 4SC</td>
<td>4SC</td>
<td>spiromesifen</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Paradigm</td>
<td>1EC</td>
<td>lambda-cyhalothrin</td>
<td>ADAMA</td>
<td>yes</td>
<td>caution</td>
<td>—</td>
</tr>
<tr>
<td>Prevathon</td>
<td>5SC</td>
<td>chlorantraniliprole</td>
<td>DuPont</td>
<td>4 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poncho 600</td>
<td>5FS</td>
<td>clothianidin</td>
<td>Bayer</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Poncho VOTiVo</td>
<td>4.17 + 0.84FS</td>
<td>clothianidin + Bacillus firmus</td>
<td>Bayer</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Sensat</td>
<td>8.66 EC</td>
<td>spinosad</td>
<td>Bayer</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>4F</td>
<td>carbaryl</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
<tr>
<td>Silencer</td>
<td>1EC</td>
<td>lambda-cyhalothrin</td>
<td>ADAMA</td>
<td>yes</td>
<td>warning</td>
<td>24 hr</td>
</tr>
</tbody>
</table>

See endnotes following table 8-3
<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>RUP</th>
<th>Signal word</th>
<th>REI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkyRaider</td>
<td>SC</td>
<td>bifenthrin, imidacloprid</td>
<td>ADAMA</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>SmartChoice 5G</td>
<td>5G</td>
<td>chlorothoxyfos + bifenthrin</td>
<td>Amvac</td>
<td>yes</td>
<td>danger</td>
<td>48 hr</td>
</tr>
<tr>
<td>Sniper</td>
<td>2.0 EC</td>
<td>bifenthrin</td>
<td>Loveland</td>
<td>yes</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Stallion</td>
<td>0.275 + 2.75L</td>
<td>zeta-cypermethrin + chlorpyrifos</td>
<td>FMC</td>
<td>yes</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Storcide II</td>
<td>21.60 + 3.70 SC</td>
<td>chlorpyrifos-methyl + deltamethrin</td>
<td>Bayer</td>
<td>danger</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Suspend SC</td>
<td>4.75 SC</td>
<td>deltamethrin</td>
<td>Bayer</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Tempo SC Ultra</td>
<td>11.8 SC</td>
<td>beta-cyfluthrin</td>
<td>Bayer</td>
<td>caution</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Tracer</td>
<td>4L</td>
<td>spinosad</td>
<td>Dow</td>
<td>caution</td>
<td>4 hr</td>
<td></td>
</tr>
<tr>
<td>Vulcan</td>
<td>3.76EC</td>
<td>chlorpyrifos</td>
<td>ADAMA</td>
<td>yes</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Warrior II</td>
<td>2.08CS</td>
<td>lambda-cyhalothrin</td>
<td>Syngenta</td>
<td>yes</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Zeal</td>
<td>2.88 SC</td>
<td>etoxazole</td>
<td>Valent</td>
<td>caution</td>
<td>12 hr</td>
<td></td>
</tr>
</tbody>
</table>

See endnotes following table 8-3.
Table 8-3. Fungicide products and related information

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulationa,b</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>Signal word</th>
<th>REId</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute 500 SC</td>
<td>22.63%+ 22.63%</td>
<td>tebuconazole + trifloxystrobin</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Acceleron DX-109</td>
<td>18.4%</td>
<td>pyraclostrobin</td>
<td>Monsanto</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>ActinoGrow ST</td>
<td>0.33%</td>
<td>Streptomyces lydicus</td>
<td>Simcam/Advant</td>
<td>caution</td>
<td>1 hr</td>
</tr>
<tr>
<td>AfterShock</td>
<td>40.30%</td>
<td>fluazastrobin</td>
<td>Loveland Products</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Allegiance Dry</td>
<td>12.5%</td>
<td>metalaxyl</td>
<td>Chemtura</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Allegiance FL</td>
<td>2.6 FL</td>
<td>metalaxyl</td>
<td>Bayer Crop Science</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Alto</td>
<td>100 SL</td>
<td>cyproconazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>AmTide Propiconazole</td>
<td>41.80%</td>
<td>propiconazole</td>
<td>AmTide</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Aproach</td>
<td>22.50%</td>
<td>picoxystrobin</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Aproach Prima</td>
<td>17.94%+ 7.17%</td>
<td>picoxystrobin + cyproconazole</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Apron Maxx RFC</td>
<td>2.31%+ 3.46%</td>
<td>fludioxonil + mephenoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Apron Maxx RTA</td>
<td>0.73%+ 0.73%</td>
<td>fludioxonil + mephenoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Apron Maxx RTA + Moly</td>
<td>1.02%+ 0.68%</td>
<td>mephenoxam + fludioxonil</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Apron XL</td>
<td>33.30%</td>
<td>mephenoxam</td>
<td>Syngenta</td>
<td>warning</td>
<td>48 hr</td>
</tr>
<tr>
<td>Apron XL LS</td>
<td>3.35</td>
<td>mephenoxam</td>
<td>Syngenta</td>
<td>warning</td>
<td>48 hr</td>
</tr>
<tr>
<td>Avaris</td>
<td>7%+ 11.7%</td>
<td>azoxystrobin + propiconazole</td>
<td>Helena Chemical</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Avicta Duo Corn</td>
<td>12.4%+ 28.1%</td>
<td>abamectin + thiamethoxam</td>
<td>Syngenta</td>
<td>warning</td>
<td>4 hr</td>
</tr>
<tr>
<td>Bean Guard/Alliance</td>
<td>12.5%+ 3.75%+ 24.45%</td>
<td>carboxin + metalaxyl + captan</td>
<td>Chemtura</td>
<td>danger</td>
<td>24 hr</td>
</tr>
<tr>
<td>Bravo Weather Stik</td>
<td>6F</td>
<td>chlorothalonil</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Bumper</td>
<td>41.8EC</td>
<td>propiconazole</td>
<td>Makhteshim-Agan</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Bumper ES</td>
<td>40.85%</td>
<td>propiconazole</td>
<td>Makhteshim-Agan</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Captan</td>
<td>5D, 7.5D, 80WP</td>
<td>captan</td>
<td>several</td>
<td>danger</td>
<td>4 days 4 4 4</td>
</tr>
<tr>
<td>Caramba</td>
<td>0.75EC</td>
<td>metconazole</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Cercobin</td>
<td>4.11SC</td>
<td>thiophanate-methyl</td>
<td>Cheminova</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>CruiserMaxx Advanced</td>
<td>21.50%+ 3.21% + 1.07%</td>
<td>thiamethoxam + mephenoxam + fludioxonil</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Cuprofix MZ Dispers</td>
<td>30+ 22DF</td>
<td>mancozeb + copper sulfate</td>
<td>Cerexa</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Cuprofix Ultra</td>
<td>40DF</td>
<td>copper sulfate</td>
<td>Cerexa</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Custodia</td>
<td>11%+ 18.35%</td>
<td>azoxystrobin + tebuconazole</td>
<td>ADAMA</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Dithane</td>
<td>75DF, 4SF, 45ME</td>
<td>mancozeb</td>
<td>Dow</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Dividend</td>
<td>0.15S, 0.31S</td>
<td>difenoconazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Domark 230ME</td>
<td>1.9EW</td>
<td>tetraconazole</td>
<td>Isagro</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Dyna-Shield Metalaxyl</td>
<td>28.35%</td>
<td>metalaxyl</td>
<td>Loveland Products</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Dynasty</td>
<td>9.6%</td>
<td>azoxystrobin</td>
<td>Syngenta</td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Echo</td>
<td>90DF</td>
<td>chlorothalonil</td>
<td>Sipcam Agro USA</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Echo Zn</td>
<td>4.17F</td>
<td>chlorothalonil</td>
<td>Sipcam Agro USA</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Echo 720</td>
<td>6F</td>
<td>chlorothalonil</td>
<td>Sipcam Agro USA</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Endura</td>
<td>70%</td>
<td>boscalid</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Enhance</td>
<td>20 + 20D</td>
<td>carboxin + captan</td>
<td>Trace Chemicals</td>
<td>danger</td>
<td>48 hr</td>
</tr>
<tr>
<td>Equation</td>
<td>2.08SC</td>
<td>azoxystrobin</td>
<td>Cheminova</td>
<td>caution</td>
<td>4 hr</td>
</tr>
</tbody>
</table>

See endnotes following table

Continued on next page
Table 8-3. Fungicide products and related information (continued)

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>Signal word</th>
<th>REI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equus DF</td>
<td>82.5%</td>
<td>chlorothalonil</td>
<td>ADAMA</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Equus 720 SST</td>
<td>54%</td>
<td>chlorothalonil</td>
<td>ADAMA</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Evito 480 SC</td>
<td>40.30%</td>
<td>fluoxastrobin</td>
<td>Arysta LifeScience</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Evito T</td>
<td>18.0% + 25%</td>
<td>fluoxastrobin + tebuconazole</td>
<td>Arysta LifeScience</td>
<td>warning</td>
<td>Various</td>
</tr>
<tr>
<td>Fitness</td>
<td>41.80%</td>
<td>propiconazole</td>
<td>Loveland Products</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Folicur</td>
<td>3.6F</td>
<td>tebuconazole</td>
<td>Bayer</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Fontelis</td>
<td>20.40%</td>
<td>penthiopyrad</td>
<td>DuPont</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Fortix</td>
<td>3.22 SC</td>
<td>fluoxastrobin + flutriafol</td>
<td>Arysta LifeScience</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Headline</td>
<td>2.09EC</td>
<td>pyraclostrobin</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Headline AMP</td>
<td>13.64% + 5.14%</td>
<td>pyraclostrobin+ metconazole</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Incognito 4.5F</td>
<td>46.2%</td>
<td>thiphanate-methyl</td>
<td>ADAMA</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Incognito 85WDG</td>
<td>85%</td>
<td>thiphanate-methyl</td>
<td>ADAMA</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>ILevo</td>
<td>48.4%</td>
<td>fluopyram</td>
<td>Bayer</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Intego Suite Soybeans</td>
<td>20.6% + 2.97% + 0.99% + 0.79%</td>
<td>clothianidin+ ethaboxam+ ipconazole+ metalaxyl</td>
<td>Valent</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Kocide 2000</td>
<td>53.80%</td>
<td>copper hydroxide</td>
<td>DuPont</td>
<td>warning</td>
<td>48 hr</td>
</tr>
<tr>
<td>Kocide 3000</td>
<td>46.1DF</td>
<td>copper hydroxide</td>
<td>DuPont</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Koverall</td>
<td>75DF</td>
<td>mancozeb</td>
<td>Cheminova</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Laredo</td>
<td>2EC</td>
<td>myclobutanil</td>
<td>Dow</td>
<td>danger</td>
<td>24 hr</td>
</tr>
<tr>
<td>Manzate</td>
<td>4F</td>
<td>mancozeb</td>
<td>DuPont</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Manzate Flowable</td>
<td>37 F</td>
<td>mancozeb</td>
<td>DuPont</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Manzate Max</td>
<td>37%</td>
<td>mancozeb</td>
<td>United Phosphorus</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Manzate Pro-Stick</td>
<td>75DF</td>
<td>mancozeb</td>
<td>DuPont</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Maxim1</td>
<td>4S</td>
<td>fludioxonil</td>
<td>Syngenta</td>
<td>caution</td>
<td>—</td>
</tr>
<tr>
<td>Maxim Quattro</td>
<td>3.32% + 2.65%</td>
<td>fludioxonil+ mfenoxam+ azoxystrobin+ thabendazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>—</td>
</tr>
<tr>
<td>Mertect 340</td>
<td>4.1F</td>
<td>thiaibendazole</td>
<td>Syngenta</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Mertect 340-F</td>
<td>42.3%</td>
<td>thiaibendazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>MetaStar ST</td>
<td>29.99%</td>
<td>metalaxyl</td>
<td>LG Life Sciences</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Muscle 3.6F</td>
<td>38.70%</td>
<td>tebuconazole</td>
<td>Sipcam Agro</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>NipsIt SUITE</td>
<td>2.93% + 0.88%</td>
<td>clothianidin+ metalaxyl + metconazole</td>
<td>Valent</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Omega</td>
<td>4.17F</td>
<td>fluazinam</td>
<td>Syngenta</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Onset4</td>
<td>38.70%</td>
<td>tebuconazole</td>
<td>WinField</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Orius 3.6F</td>
<td>38.70%</td>
<td>tebuconazole</td>
<td>ADAMA</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Pennozeb</td>
<td>75DF</td>
<td>mancozeb</td>
<td>Bayer</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Preemptor</td>
<td>3.22 SC</td>
<td>fluoxastrobin + flutriafol</td>
<td>FMC</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Priaxor</td>
<td>14.33% + 28.58%</td>
<td>fluoxastrobin+ pyraclostrobin</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Pristine</td>
<td>12.8% + 25.2%</td>
<td>pyraclostrobin + boscalid</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Proline 480</td>
<td>45C</td>
<td>prothioconazole</td>
<td>Bayer</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Propicure 3.6F</td>
<td>41.80%</td>
<td>propiconazole</td>
<td>Direct Ag Source</td>
<td>warning</td>
<td>12 hr</td>
</tr>
</tbody>
</table>

See endnotes following table

Continued on next page

Continued on next page
Table 8-3. Fungicide products and related information (continued)

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Formulation</th>
<th>Active ingredient(s)</th>
<th>Manufacturer</th>
<th>Signal word</th>
<th>REI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProtiMax</td>
<td>3.6EC</td>
<td>propiconazole</td>
<td>Dow</td>
<td>warning</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Prosaro</td>
<td>421 SC</td>
<td>prothioconazole+ tebuconazole</td>
<td>Bayer</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>Quadris</td>
<td>2F</td>
<td>azoxystrobin</td>
<td>Syngenta</td>
<td>caution</td>
<td>4 hr</td>
</tr>
<tr>
<td>Quadris Ridomil Gold+</td>
<td>2F + 4EC</td>
<td>azoxystrobin+ mefenoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr*</td>
</tr>
<tr>
<td>Quadris Top</td>
<td>18.2% + 11.4%</td>
<td>azoxystrobin + difenoconazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Quadris Xtra</td>
<td>280 SC</td>
<td>azoxystrobin+ cyproconazole</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Quilt</td>
<td>1.04 + 0.62EC</td>
<td>azoxystrobin + propiconazole</td>
<td>Syngenta</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Quilt Xcel</td>
<td>1.2L + 1.18L</td>
<td>azoxystrobin+ propiconazole</td>
<td>Syngenta</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Rancona Xxtra</td>
<td>0.0916%+ 1.64 %</td>
<td>ipconazole+ metalaxyl</td>
<td>Chemtura</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Raxil MD</td>
<td>0.039 + 0.051L</td>
<td>tebuconazole + metalaxyl</td>
<td>Bayer</td>
<td>caution</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Raxil XT</td>
<td>15 + 20WP</td>
<td>tebuconazole + metalaxyl</td>
<td>Bayer</td>
<td>caution</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Raxil-Thiram</td>
<td>0.055 + 1.84F</td>
<td>tebuconazole + thiram</td>
<td>Bayer</td>
<td>caution</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Ridomil Gold GR</td>
<td>2.5G</td>
<td>mefenoxam</td>
<td>Syngenta</td>
<td>caution</td>
<td>48 hr*</td>
</tr>
<tr>
<td>Rizolex</td>
<td>42.00%</td>
<td>tolclofos-methyl</td>
<td>Valent</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Stamina</td>
<td>18.40%</td>
<td>pyraclostrobin</td>
<td>BASF</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Stratego</td>
<td>1.04+ 1.04S</td>
<td>propiconazole+ trifloxystrobin</td>
<td>Bayer Crop Science</td>
<td>warning</td>
<td>24 hr</td>
</tr>
<tr>
<td>Stratego YLD</td>
<td>1.05LS+ 3.13LS</td>
<td>prothioconazole+ trifloxystrobin</td>
<td>Bayer Crop Science</td>
<td>caution</td>
<td>48 hr</td>
</tr>
<tr>
<td>T-22 HC</td>
<td>1.15%</td>
<td>Trichoderma harzianum</td>
<td>BioWorks</td>
<td>caution</td>
<td>—</td>
</tr>
<tr>
<td>TebuStar 3.6L^</td>
<td>38.70%</td>
<td>tebuconazole</td>
<td>Agri Star</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>TebuStar^</td>
<td>38.70%</td>
<td>tebuconazole</td>
<td>United Phosphorus</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Terraclor</td>
<td>4F, 75WP</td>
<td>PCNB</td>
<td>Uniroyal</td>
<td>caution</td>
<td>12 hr*</td>
</tr>
<tr>
<td>Thiram</td>
<td>65WP</td>
<td>thiram</td>
<td>Taminco</td>
<td>caution</td>
<td>24 hr</td>
</tr>
<tr>
<td>Tilt</td>
<td>3.6EC</td>
<td>propiconazole</td>
<td>Syngenta</td>
<td>warning</td>
<td>24 hr*</td>
</tr>
<tr>
<td>Topaz</td>
<td>41.80%</td>
<td>propiconazole</td>
<td>WinField</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Topguard</td>
<td>1.04 SC</td>
<td>flutriafol</td>
<td>Cheminova</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Topsin M</td>
<td>4.5F + 70WP</td>
<td>thiophanate+ methyl</td>
<td>Cerexagr</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Trilex</td>
<td>22.0%</td>
<td>trifloxystrobin</td>
<td>Bayer Crop Science</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Trivapro A</td>
<td>10.27%</td>
<td>benzovindiflupyr</td>
<td>Syngenta</td>
<td>danger</td>
<td>12 hr</td>
</tr>
<tr>
<td>Trivapro</td>
<td>13.5% + 11.7%</td>
<td>azoxystrobin + propiconazole</td>
<td>Syngenta</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Twinline</td>
<td>1.083L + 0.67L</td>
<td>pyraclostrobin+ metconazole</td>
<td>BASF</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Vertisan</td>
<td>20.60%</td>
<td>penthiopyrad</td>
<td>DuPont</td>
<td>warning</td>
<td>12 hr</td>
</tr>
<tr>
<td>Viathon</td>
<td>49.0% + 3.3%</td>
<td>potassium phosphate + tebucono-</td>
<td>Helena</td>
<td>caution</td>
<td>12 hr</td>
</tr>
<tr>
<td>Vibrance</td>
<td>45.45%</td>
<td>sedaxane</td>
<td>Syngenta</td>
<td>caution</td>
<td>12 hr</td>
</tr>
</tbody>
</table>

See endnotes following table
Endnotes for Appendix Tables 8-1, 8-2, 8-3

1 CS = capsule suspension; D = dust; DF = dry flowable; DS = dry soluble; E = emulsifiable; EC = emulsifiable concentrate; ES = emulsifiable suspension; EW = emulsifiable in water; F = flowable; FL = flowable liquid; FS = insecticidal seed treatment specifically formulated for use by commercial seed treatment companies only; G = granular, L = liquid flowable; LFR = liquid fertilizer ready; LS = liquid sprayable; LV = liquid volatile; ME = microencapsulated; REI = restricted-entry interval; RUP = restricted-use product; S = soluble; SC = suspension concentrate; SE = suspension emulsion; SG = soluble granules; SP = soluble powder; WG = wettable granules; WP = wettable powder; WSP = water-soluble packet; ZC = Zeon Concentrate

2 Numbers before the dry formulations (D, G, WP, etc.) represent percent active ingredient; numbers before liquid formulations (EC, E, SP, F, etc.) represent pounds of active ingredient or ae/gal of product.

3 ACCase = acetyl CoA carboxylase (lipid synthesis inhibitor); ALS = acetolactate synthase (amino acid synthesis inhibitor); auxin = growth regulator; EPSPS = 5-enolpyruvylshikimate-3-phosphate synthase (amino acid synthesis inhibitor); GS = glutamine synthetase (nitrogen metabolism inhibitor); photosystem I = cell membrane disrupter; photosystem II = photosynthesis inhibitor; pigment = isoprenoid pathway; PPO = protoporphyrinogen oxidase (cell membrane disrupter); seedling root = seedling root growth inhibitor; seedling shoot = seedling shoot growth inhibitor

4 REI as required by the Worker Protection Standard (WPS) to protect agricultural workers and handlers of agricultural pesticides. Labeled nonagricultural uses may have different REIs or worker notification requirements.

5 REI exception: If the product is soil-injected or soil-incorporated or used for seed treatment, the WPS, under certain circumstances, allows workers to enter the treated area if there will be no contact with anything that has been treated.

6 Under the WPS, this is a nonagricultural use product, thus there is no REI requirement.

7 Under the WPS, this product requires dual notification to workers: verbal AND posted. Wisconsin has additional posting requirements when this product is applied to areas within 300 feet of a residence, migrant labor camp, school, day care facility, health care facility, commercial or industrial facility, public recreation area, or other nonagricultural area where people are likely to be present during the REI.

8 REI exception: After the first 48 hours of the REI, workers may enter the treated area to perform hand labor or other tasks involving contact with anything that has been treated, such as plants, soil, or water, without time limit, if they wear the early-entry personal protective equipment (PPE) listed on the label.

9 REI exception: 24 hours for strawberries. After expiration of the 24-hour period, no PPE is required.

10 REI Exception: 19 days for sweet corn.

11 For use only by commercial seed treaters.

12 Sold in two containers (co-packs).
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa*</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D Amine 4, Shredder</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>0</td>
</tr>
<tr>
<td>2,4-D LV4, Shredder</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>0</td>
</tr>
<tr>
<td>Aatrex</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Accent Q</td>
<td>10M</td>
<td>8M</td>
<td>10M</td>
<td>0</td>
<td>10M</td>
<td>8M</td>
<td>10M</td>
<td>10M</td>
<td>15D</td>
<td>10M</td>
<td>4–8M</td>
<td>Sweet corn: Hybrids Merit, Carnival, and Sweet Success require 15M \nPotato and tobacco: 18M if soil pH greater than 6 \nWheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Acuron</td>
<td>18M</td>
<td>4M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>4M</td>
<td>If applied after June 1, rotating to crops with 10 month intervals other than corn may result in crop injury</td>
</tr>
<tr>
<td>Acuron Flexi</td>
<td>10M</td>
<td>4M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Affinity BroadSpec</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>14D</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>7D</td>
<td>45D</td>
<td>0</td>
<td>Use shorter interval if 2.5 oz or less is used; otherwise use longer interval \nField corn and soybean: Add 7 days on light-textured soils or soils with a pH greater than 7.9</td>
<td></td>
</tr>
<tr>
<td>Anthem</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td></td>
</tr>
<tr>
<td>Anthem Flex</td>
<td>10M</td>
<td>11–18M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>11–18M</td>
<td>11M</td>
<td>4M</td>
<td>0–4M</td>
<td>18M</td>
<td>0–6M</td>
<td>See label for detailed descriptions on interval when ranges are present (based on rate applied)</td>
</tr>
<tr>
<td>Anthem Maxx</td>
<td>10M</td>
<td>11–18M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>11–18M</td>
<td>11M</td>
<td>4M</td>
<td>0–4M</td>
<td>18M</td>
<td>0–6M</td>
<td>See label for detailed descriptions on interval when ranges are present (based on rate applied)</td>
</tr>
<tr>
<td>Anthem ATZ</td>
<td>18M</td>
<td>18M</td>
<td>FY</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>18M</td>
<td></td>
</tr>
<tr>
<td>Assure II</td>
<td>4M</td>
<td>4M</td>
<td>0</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td>0</td>
<td>4M</td>
<td>0</td>
<td>4M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Authority Assist</td>
<td>12M</td>
<td>9.5M</td>
<td>10M</td>
<td>10M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>10M</td>
<td>26M</td>
<td>0</td>
<td>9.5M</td>
<td>4M</td>
</tr>
<tr>
<td>Authority Elite</td>
<td>12M</td>
<td>4.5M</td>
<td>12M+BA</td>
<td>10M</td>
<td>18M</td>
<td>12M</td>
<td>12M+BA</td>
<td>4M</td>
<td>0</td>
<td>10M</td>
<td>4.5M</td>
<td>Alfalfa: To avoid injury do not apply more than 1.9 lb ai metolachlor per acre in previous crop or make lay-by or other post applications</td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label

*See the label for information on crops not listed below
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority First</td>
<td>12M</td>
<td>12M</td>
<td>30M</td>
<td>10–18M</td>
<td>18M</td>
<td>12M</td>
<td>30M</td>
<td>18M</td>
<td>0</td>
<td>30M</td>
<td>4M</td>
<td>Field corn: 18M if pH greater than 7 and organic matter is less than 1.5%</td>
</tr>
<tr>
<td>Authority Maxx</td>
<td>12–18M</td>
<td>4M</td>
<td>36M</td>
<td>10–18M</td>
<td>18M</td>
<td>12–18M</td>
<td>36M</td>
<td>0</td>
<td>10–18M</td>
<td>4M</td>
<td></td>
<td>Crops with 18M interval require 30 inches of rainfall; 24M if soil pH greater than 7.5 Barley and sweet corn: 18M if soil pH greater than 7.5; minimum rainfall of 15 inches required Soybean: 9M if soil pH greater than 7.5; 4M for sulfonyl-tolerant soybean (STS) varieties</td>
</tr>
<tr>
<td>Authority MTZ</td>
<td>12M</td>
<td>4M</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>18M</td>
<td>12M</td>
<td>0</td>
<td>12M</td>
<td>4M</td>
<td></td>
<td>Crops with 18M interval require 30 inches of rainfall; 24M if soil pH greater than 7.5 Barley and sweet corn: 18M if soil pH greater than 7.5; minimum rainfall of 15 inches required Soybean: 9M if soil pH greater than 7.5; 4M for sulfonyl-tolerant soybean (STS) varieties</td>
</tr>
<tr>
<td>Autumn Super 51 WDG</td>
<td>12M</td>
<td>9M</td>
<td>18M</td>
<td>30D</td>
<td>9M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>60D</td>
<td>18M</td>
<td>3M</td>
<td>Soybean: Intervals are for 1.25 oz/a rate without Optimum GAT or STS soybean. Lesser soybean rotations restrictions may apply; see label Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Balance Flexx</td>
<td>10M</td>
<td>6M</td>
<td>18M</td>
<td>0</td>
<td>6M</td>
<td>18M</td>
<td>18M</td>
<td>6M</td>
<td>6M</td>
<td>18M</td>
<td>4M</td>
<td>Use shorter interval after 8 oz/a and longer interval after 16 oz/a</td>
</tr>
<tr>
<td>Banvel</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>0</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td></td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Basagran</td>
<td>—</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Basis Blend</td>
<td>10M</td>
<td>9M</td>
<td>10M</td>
<td>0</td>
<td>10M</td>
<td>9M</td>
<td>10M</td>
<td>1M</td>
<td>10M</td>
<td>10M</td>
<td>3–9M</td>
<td>Soybean: Intervals are for 1.25 oz/a rate without Optimum GAT or STS soybean. Lesser soybean rotations restrictions may apply; see label Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Bicep Lite II</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>Soybean: Intervals are for 1.25 oz/a rate without Optimum GAT or STS soybean. Lesser soybean rotations restrictions may apply; see label Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Boundary 6.5</td>
<td>4.5M</td>
<td>8M</td>
<td>12M</td>
<td>8M</td>
<td>8M</td>
<td>12M</td>
<td>8M</td>
<td>0</td>
<td>0</td>
<td>12M</td>
<td>4.5–8M</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Broadaxe XC</td>
<td>12M</td>
<td>4.5M</td>
<td>12M</td>
<td>10M</td>
<td>18M</td>
<td>12M</td>
<td>18M</td>
<td>4M</td>
<td>0</td>
<td>10M</td>
<td>4.5M</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Butctril</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Bullet/Lariat</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Butyrac 200</td>
<td>—</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Cadet</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>0</td>
<td>0</td>
<td>AH</td>
<td>AH</td>
<td>AH</td>
<td>0</td>
<td>AH</td>
<td>AH</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Callisto</td>
<td>10M</td>
<td>12OD</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>10M</td>
<td>12OD</td>
<td></td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Callisto GT</td>
<td>10M</td>
<td>4M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>4M</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>10M</td>
<td>4M</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Callisto Xtra</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>FY</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Canopy Blend</td>
<td>10M</td>
<td>4M</td>
<td>12M</td>
<td>10M</td>
<td>18M</td>
<td>30M</td>
<td>12M</td>
<td>30M</td>
<td>0</td>
<td>10M</td>
<td>4M</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label * See the label for information on crops not listed below
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa a</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Pea</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy EX</td>
<td>12M</td>
<td>3M</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>3M</td>
<td>9M</td>
<td>30M</td>
<td>0</td>
<td>9M</td>
<td>3M</td>
</tr>
<tr>
<td>Capreno</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>10M</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>12M</td>
<td>4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaparral</td>
<td>24M</td>
<td>12M</td>
<td>24M</td>
<td>12M</td>
<td>12M</td>
<td>24M</td>
<td>24M</td>
<td>24M</td>
<td>12M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chateau</td>
<td>6–12M</td>
<td>6–12M</td>
<td>6–18M</td>
<td>4M</td>
<td>6–12M</td>
<td>6–18M</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimarron Max/Plus</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>10M</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>Cimarron X-tra</td>
<td>BA</td>
<td>24M</td>
<td>BA</td>
<td>BA</td>
<td>16M</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td>4M</td>
<td>15–30D</td>
<td>4M</td>
<td>0</td>
<td>15–30D</td>
<td>4M</td>
<td>4M</td>
<td>14–28D</td>
<td>4M</td>
<td>15–30D</td>
<td></td>
</tr>
<tr>
<td>Classic</td>
<td>9M</td>
<td>3M</td>
<td>9M</td>
<td>9M</td>
<td>3M</td>
<td>9M</td>
<td>30M</td>
<td>0</td>
<td>15M</td>
<td>3M</td>
<td></td>
</tr>
<tr>
<td>Cobra/Phoenix</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Corvis</td>
<td>17M</td>
<td>9M</td>
<td>9M</td>
<td>9M</td>
<td>3M</td>
<td>9M</td>
<td>30M</td>
<td>0</td>
<td>15M</td>
<td>3M</td>
<td></td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Diflexx</td>
<td>120D</td>
<td>60D</td>
<td>130D</td>
<td>0</td>
<td>120D</td>
<td>120D</td>
<td>120D</td>
<td>120D</td>
<td>30–60D</td>
<td>120D</td>
<td>120D</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>0</td>
<td>10M</td>
<td>18M</td>
<td>18M</td>
<td>10M</td>
<td>12M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Dual II Magnum</td>
<td>4M</td>
<td>4.5M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.5M</td>
<td>0</td>
<td>0</td>
<td>4.5M</td>
<td>4.5M</td>
<td></td>
</tr>
<tr>
<td>Enlist Duo</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>7–14D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
</tr>
<tr>
<td>Enlite</td>
<td>12M</td>
<td>4M</td>
<td>9M</td>
<td>9M</td>
<td>9M</td>
<td>12M</td>
<td>9M</td>
<td>30M</td>
<td>0</td>
<td>9M</td>
<td>4M</td>
</tr>
<tr>
<td>Envive</td>
<td>12M</td>
<td>4M</td>
<td>12M</td>
<td>10M</td>
<td>18M</td>
<td>30M</td>
<td>12M</td>
<td>30M</td>
<td>0</td>
<td>10M</td>
<td>4M</td>
</tr>
<tr>
<td>Eptam</td>
<td>AH</td>
</tr>
<tr>
<td>Escort</td>
<td>BA</td>
<td>10M</td>
<td>BA</td>
<td>BA</td>
<td>10M</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>BA</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>Express</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>14D</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Extreme</td>
<td>4M</td>
<td>9.5M</td>
<td>4M</td>
<td>8.5M</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td>26M</td>
<td>0</td>
<td>9.5M</td>
<td>3M</td>
</tr>
<tr>
<td>Fierce</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>7–30D</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Fierce XLT</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>30M</td>
<td>18M</td>
<td>30M</td>
<td>0</td>
<td>18M</td>
<td>10M</td>
</tr>
<tr>
<td>FirstRate</td>
<td>9M</td>
<td>12M</td>
<td>9M</td>
<td>18M</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Flexstar</td>
<td>18M</td>
<td>4M</td>
<td>0</td>
<td>10M</td>
<td>10M</td>
<td>4M</td>
<td>10M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
</tr>
<tr>
<td>Flexstar GT 3.5</td>
<td>18M</td>
<td>4M</td>
<td>0</td>
<td>10M</td>
<td>10M</td>
<td>4M</td>
<td>10M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
</tr>
<tr>
<td>Fulltime NXT</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusilade DX</td>
<td>0</td>
<td>60D</td>
<td>0</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60D</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved;
NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label

a See the label for information on crops not listed below

Soybean: If 12 fl oz/a or less 30 days otherwise 60 days
Field corn: Imidazolinone-tolerant corn hybrids have no restrictions
Tobacco: 10M interval for transplant tobacco after 0.3 oz/a or less

Continued on next page
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion</td>
<td>0</td>
<td>60D</td>
<td>0</td>
<td>60D</td>
<td>60D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60D</td>
<td></td>
</tr>
<tr>
<td>G-Max Lite</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guardsman Max</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Halex GT</td>
<td>10M</td>
<td>4.5M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>4.5M</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>10M</td>
<td>4.5M</td>
<td></td>
</tr>
<tr>
<td>Harmony Extra</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>45D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Harmony SG</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>45D</td>
<td>0</td>
<td>45D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Harness</td>
<td>9M</td>
<td>FY</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>FY</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>4M</td>
</tr>
<tr>
<td>Harness Xtra</td>
<td>2Y</td>
<td>18M</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>18M</td>
</tr>
<tr>
<td>Harness Xtra 5.6L</td>
<td>2Y</td>
<td>18M</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>18M</td>
<td></td>
</tr>
<tr>
<td>Hornet WDG</td>
<td>10.5M</td>
<td>4M</td>
<td>10.5–18M</td>
<td>0</td>
<td>10.5–18M</td>
<td>4M</td>
<td>10.5M</td>
<td>18M</td>
<td>10.5M</td>
<td>18M</td>
<td>4M</td>
<td>Sweet corn: 10.5M interval for hybrids listed on the supplemental label</td>
</tr>
<tr>
<td>Huskie</td>
<td>9M</td>
<td>7D</td>
<td>BA</td>
<td>9M</td>
<td>9M</td>
<td>7D</td>
<td>BA</td>
<td>9M</td>
<td>4M</td>
<td>BA</td>
<td>7D</td>
<td>Alfalfa: Tillage and 12 inches rainfall is required between application and seeding</td>
</tr>
<tr>
<td>Huskie Complete</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>9M</td>
<td>18M</td>
<td>9M</td>
<td>18M</td>
<td>9M</td>
<td>18M</td>
<td>3M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td>9M</td>
<td>3M</td>
<td>9–18M</td>
<td>0</td>
<td>0</td>
<td>3M</td>
<td>9M</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>3M</td>
<td>Snap beans: 9M if using 0.5 oz/a rate</td>
</tr>
<tr>
<td>Instigate</td>
<td>10M</td>
<td>9M</td>
<td>18M</td>
<td>0</td>
<td>10M</td>
<td>9M</td>
<td>18M</td>
<td>10M</td>
<td>10M</td>
<td>18M</td>
<td>4M</td>
<td>Alfalfa: 18M if less than 15 inches of rain</td>
</tr>
<tr>
<td>INTRRO</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>0</td>
<td>2Y</td>
<td>FY</td>
<td></td>
</tr>
<tr>
<td>Journey</td>
<td>36M</td>
<td>24M</td>
<td>18M</td>
<td>36M</td>
<td>36M</td>
<td>24M</td>
<td>36M</td>
<td>48M</td>
<td>18M</td>
<td>36M</td>
<td>12M</td>
<td>Intervals are for 12 oz/a rate. Alfalfa, field corn, sweet corn, peas, potato, and tobacco: Bioassay required</td>
</tr>
<tr>
<td>Keystone NXT</td>
<td>2Y</td>
<td>18M</td>
<td>2Y</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>FY</td>
<td>18M</td>
<td></td>
</tr>
<tr>
<td>Keystone LA NXT</td>
<td>15M</td>
<td>15M</td>
<td>2Y</td>
<td>0</td>
<td>15M</td>
<td>2Y</td>
<td>15M</td>
<td>FY</td>
<td>15M</td>
<td>15M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lariat</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Laudis</td>
<td>10M</td>
<td>4M</td>
<td>10M</td>
<td>0</td>
<td>0</td>
<td>4M</td>
<td>10M</td>
<td>10M</td>
<td>8M</td>
<td>18M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Liberty 280 SL</td>
<td>6M</td>
<td>70D</td>
<td>6M</td>
<td>0</td>
<td>6M</td>
<td>70D</td>
<td>6M</td>
<td>70D</td>
<td>0</td>
<td>6M</td>
<td>70D</td>
<td></td>
</tr>
<tr>
<td>Lorox</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Lumax EZ</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>FY</td>
<td>18M</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>4.5M</td>
<td>Only corn or sorghum can be planted the following year, if planted after June 1</td>
</tr>
<tr>
<td>Marvel</td>
<td>18M</td>
<td>4M</td>
<td>0</td>
<td>10M</td>
<td>10M</td>
<td>4M</td>
<td>10M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label

*See the label for information on crops not listed below

Continued on next page
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa*</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCPA Amine</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>MCPA Ester</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>4M</td>
<td>4M</td>
<td>12M</td>
<td>4M</td>
<td>4M</td>
<td>12M</td>
<td>8M</td>
<td>12M</td>
<td>0</td>
<td>12M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>NorthStar</td>
<td>8M</td>
<td>8M</td>
<td>8M</td>
<td>14D</td>
<td>8M</td>
<td>8M</td>
<td>8M</td>
<td>8M</td>
<td>8M</td>
<td>8M</td>
<td>3–8M</td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>OpTill</td>
<td>4M</td>
<td>9.5M</td>
<td>4M</td>
<td>8.5M</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td>26M</td>
<td>0–1M</td>
<td>9.5M</td>
<td>4M</td>
<td>Soybean: See label</td>
</tr>
<tr>
<td>OpTill PRO</td>
<td>9M</td>
<td>9.5M</td>
<td>4M</td>
<td>8.5M</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td>26M</td>
<td>0–1M</td>
<td>9.5M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td>7D</td>
<td>7D</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td>60D</td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td>9M</td>
<td>14D</td>
<td>12M</td>
<td>3M</td>
<td>3M</td>
<td>14D</td>
<td>12M</td>
<td>9M</td>
<td>9M</td>
<td>12M</td>
<td>14D</td>
<td></td>
</tr>
<tr>
<td>Outlook</td>
<td>FY</td>
<td>4M</td>
<td>FY</td>
<td>0</td>
<td>0</td>
<td>4M</td>
<td>FY</td>
<td>FY</td>
<td>0</td>
<td>FY</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Overdrive</td>
<td>30D</td>
<td></td>
</tr>
<tr>
<td>Permit</td>
<td>9M</td>
<td>2M</td>
<td>9M</td>
<td>1M</td>
<td>3M</td>
<td>2M</td>
<td>9M</td>
<td>9M</td>
<td>9M</td>
<td>2Y</td>
<td>2M</td>
<td></td>
</tr>
<tr>
<td>Phoenix</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poast Plus</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td></td>
</tr>
<tr>
<td>Prefix</td>
<td>18M</td>
<td>4.5M</td>
<td>0</td>
<td>10M</td>
<td>10M</td>
<td>4.5M</td>
<td>12M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>4.5M</td>
<td>Succulent peas are 4 months</td>
</tr>
<tr>
<td>Princep</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>0</td>
<td>0</td>
<td>2Y</td>
<td>2Y</td>
<td>FY</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
<td>Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Prowl H2O</td>
<td>FY</td>
<td>FY</td>
<td>0</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4M–FY</td>
<td>Field corn: Imidazolinone-tolerant corn hybrids have no restrictions</td>
</tr>
<tr>
<td>Pursuit</td>
<td>4M</td>
<td>9.5M</td>
<td>4M</td>
<td>8.5M</td>
<td>18M</td>
<td>18M</td>
<td>4M</td>
<td>26M</td>
<td>0</td>
<td>9.5M</td>
<td>3M</td>
<td></td>
</tr>
<tr>
<td>Python</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td>0</td>
<td>10.5–18M</td>
<td>4M</td>
<td>4M</td>
<td>12M</td>
<td>0</td>
<td>9M</td>
<td>4M</td>
<td>Sweet corn: 10.5M interval for hybrids listed on the supplemental label</td>
</tr>
<tr>
<td>Raptor</td>
<td>3M</td>
<td>4M</td>
<td>0</td>
<td>8.5M</td>
<td>8.5M</td>
<td>9M</td>
<td>0</td>
<td>9M</td>
<td>0</td>
<td>9M</td>
<td>3M</td>
<td>Potato: 18M if less than 18 inches of rainfall or if soil pH less than 6.2</td>
</tr>
<tr>
<td>Realm Q</td>
<td>10M</td>
<td>9M</td>
<td>18M</td>
<td>0</td>
<td>10M</td>
<td>9M</td>
<td>18M</td>
<td>10M</td>
<td>18M</td>
<td>4–9M</td>
<td></td>
<td>Alfalfa: 18M if less than 15 inches of rainfall Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label

*See the label for information on crops not listed below
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Resicore | 10.5M | 10.5M | 18M | 0 | 0 | 10.5M| 18M | 18M | 10.5M | 18M | 18M | **Soybean:** 10.5M for soils greater than 2% OM and rainfall greater than 15 inches within 12 months of application or 12 months.
| Resolve Q | 10M | 9M | 10M | 0 | 10M | 9M | 10M | 1.5M | 10M | 18M | 18M | 3–9M |
| Resource | 30D | 30D | 30D | 0 | 30D | 30D | 0 | 30D | 30D | 30D | 30D | *Wheat:* Use shorter interval for winter wheat, longer interval for spring wheat.
| Revulin Q | 10M | 4M | 18M | 0 | 0 | 8M | 18M | 10M | 18M | 18M | 18M | 4M |
| Roundup Power-MAX | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30D | 0 | |
| Select 2EC/Max | 0 | 30D | 0 | 6–30D | 30D | 30D | 0 | 30D | 30D | 30D | |
| Sequence | 4M | 4.5M | 0 | 0 | 0 | 4.5M | 0 | 4.5M | 0 | FY | FY | 4.5M |
| Sharpen | 6M | 0 | 3M | 0 | 2M | 3M | 6M | 2–3M | 6M | 0 | |
| Solstice | 18M | 18M | 18M | 0 | 18M | 18M | 18M | 18M | 10M | 18M | 18M | |
| Sonic | 12M | 12M | 30M | 10M | 18M | 12M | 30M | 18M | 0 | 30M | 4M | **Field corn and sweet corn:** 18M if 6.5–8 oz applied to soil with 1.5% organic matter or less and pH greater than 7. **Soybean, Peas:** Bioassay required.
| Spartan | 12M | 4M | 12M | 10M | 18M | 12M | 12M | 12M | 0 | 0 | 4M | |
| Spike | BA | BA | BA | BA | BA | BA | BA | BA | BA | BA | |
| Starane | 4M | 0 | 4M | 0 | 0 | 4M | 4M | 4M | 4M | 0 | |
| Status | 30D | 30D | 4M | 7D | 4M | 30D | 4M | 4M | 30D | 4M | 30D | |
| Steadfast Q | 10M | 8M | 10M | 0 | 10M | 8M | 10M | 10M | 15D | 10M | 4–8M | |
| Stinger | 10.5M | 0 | 18M | 0 | 10.5M | 0 | 18M | 18M | 10.5M | 18M | 18M | **Soybean:** 18M if soil has less than 2% organic matter and rainfall is less than 15 inches.

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label.

*See the label for information on crops not listed below.
Table 8-4. Planting interval for rotational crops (continued)

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Alfalfa†</th>
<th>Barley</th>
<th>Snap beans</th>
<th>Field corn</th>
<th>Sweet corn</th>
<th>Oats</th>
<th>Peas</th>
<th>Potato</th>
<th>Soybean</th>
<th>Tobacco</th>
<th>Wheat</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SureStart II</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td>0</td>
<td>10.5–18M</td>
<td>FY</td>
<td>2Y</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>4M</td>
<td>Alfalfa: Minimum rainfall of 15 inches required. Soybean: 18M if soil has less than 2% organic matter and rainfall is less than 15 inches</td>
</tr>
<tr>
<td>Surveil</td>
<td>30M</td>
<td>30M</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>9M</td>
<td>9M</td>
<td>18M</td>
<td>0</td>
<td>30M</td>
<td>3M</td>
<td>Alfalfa and barley: Bioassay required</td>
</tr>
<tr>
<td>Synchrony XP</td>
<td>9M</td>
<td>3M</td>
<td>9M</td>
<td>9M</td>
<td>9–18M</td>
<td>3M</td>
<td>9M</td>
<td>30M</td>
<td>0</td>
<td>9M</td>
<td>3M</td>
<td>Sweet corn: 18M for rates over 0.375 oz/a</td>
</tr>
<tr>
<td>Touchdown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Treflan</td>
<td>5M</td>
<td>12M</td>
<td>0</td>
<td>12M</td>
<td>12M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5M</td>
<td>12M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tripleflex II</td>
<td>FY</td>
<td>FY</td>
<td>2Y</td>
<td>0</td>
<td>10.5–18M</td>
<td>FY</td>
<td>2Y</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>4M</td>
<td>Alfalfa: Minimum rainfall of 15 inches required. Soybean: 18M if soil has less than 2% organic matter and rainfall is less than 15 inches</td>
</tr>
<tr>
<td>Trivence</td>
<td>10M</td>
<td>4M</td>
<td>30M</td>
<td>10M</td>
<td>18M</td>
<td>18M</td>
<td>12M</td>
<td>30M</td>
<td>4M</td>
<td>18M</td>
<td>4M</td>
<td>Tobacco: As transplants</td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>100D</td>
<td>40D</td>
<td>100D</td>
<td>100D</td>
<td>100D</td>
<td>100D</td>
<td>100D</td>
<td>100D</td>
<td>0</td>
<td>100D</td>
<td>40D</td>
<td></td>
</tr>
<tr>
<td>Valor SX</td>
<td>10M</td>
<td>4M</td>
<td>4M</td>
<td>1M</td>
<td>4M</td>
<td>10M</td>
<td>4M</td>
<td>12M</td>
<td>0</td>
<td>2M</td>
<td>2M</td>
<td>Potato: Bioassay required</td>
</tr>
<tr>
<td>Valor XLT</td>
<td>12M</td>
<td>4M</td>
<td>12M</td>
<td>10M</td>
<td>18M</td>
<td>30M</td>
<td>12M</td>
<td>30M</td>
<td>0</td>
<td>10M</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Velpar</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>12M</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td>2Y</td>
<td></td>
</tr>
<tr>
<td>Verdict</td>
<td>FY</td>
<td>4M</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>4M</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>4M</td>
<td></td>
</tr>
<tr>
<td>Vida</td>
<td>30D</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>0</td>
<td>30D</td>
<td>30D</td>
<td>0</td>
<td>0</td>
<td>30D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Warrant</td>
<td>9M</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>FY</td>
<td>4M</td>
<td>4M</td>
<td>Replanting of corn or soybeans may result in crop injury</td>
</tr>
<tr>
<td>Warrant Ultra</td>
<td>18M</td>
<td>4M</td>
<td>18M</td>
<td>10M</td>
<td>10–12M</td>
<td>4M</td>
<td>10M</td>
<td>18M</td>
<td>0</td>
<td>18M</td>
<td>4M</td>
<td>Sweet corn: See label</td>
</tr>
<tr>
<td>Weedmaster</td>
<td>4M</td>
<td>10D</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td>10D</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td>4M</td>
<td>10D</td>
<td>Barley, oats, and wheat: 10D per pint/a</td>
</tr>
<tr>
<td>Yukon</td>
<td>9M</td>
<td>2M</td>
<td>9M</td>
<td>1M</td>
<td>3M</td>
<td>2M</td>
<td>9M</td>
<td>9M</td>
<td>2Y</td>
<td>2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zemax</td>
<td>18M</td>
<td>FY</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>FY</td>
<td>18M</td>
<td>FY</td>
<td>FY</td>
<td>18M</td>
<td>4.5M–FY</td>
<td>Intervals are for 0.5 oz/a rate. Wheat: Use shorter interval for winter wheat, longer interval for spring wheat</td>
</tr>
<tr>
<td>Zidua</td>
<td>10M</td>
<td>11M</td>
<td>18M</td>
<td>0</td>
<td>0</td>
<td>11M</td>
<td>4–6M</td>
<td>4M</td>
<td>0–4M</td>
<td>18M</td>
<td>4–6M</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 0 = no restriction; M = month; AH = after harvest; D = day; Y = year; NA = not approved; NL = not listed; BA = bioassay required; FY = following year; — = no restrictions for rotational crops listed on label

† See the label for information on crops not listed below
Table 8-5. Herbicide effectiveness on listed invasive weeds in CRP fields

<table>
<thead>
<tr>
<th>Commercial name</th>
<th>Active ingredient(s)</th>
<th>Burdock</th>
<th>Canada goldenrod</th>
<th>Chinese legume</th>
<th>Common tansy</th>
<th>Crownwatch</th>
<th>Curly dock</th>
<th>Damas rocket</th>
<th>Field bindweed</th>
<th>Garlic mustard</th>
<th>Giant hogweed</th>
<th>Giant ragweed</th>
<th>Hawkweeds</th>
<th>Hill mustard</th>
<th>Japanese hedge parsley</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>2,4-D</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2,4-D + glyphosate</td>
<td>2,4-D + glyphosate</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Banvel</td>
<td>dicamba</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Butvel</td>
<td>2,4-DB</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Chaparral</td>
<td>aminopyralid + metsulfuron</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>—</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cimarron Max</td>
<td>metsulfuron + 2,4-D + dicamba</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>6</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Cimarron Plus</td>
<td>metsulfuron + chlorosulfuron</td>
<td>9</td>
<td>9</td>
<td>—</td>
<td>10</td>
<td>8</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>6</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Crossbow</td>
<td>2,4-D + triclopyr</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>9</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Curtail</td>
<td>2,4-D + clopyralid</td>
<td>8</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Escort</td>
<td>metsulfuron</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ForeFront HL</td>
<td>2,4-D + aminopyralid</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>—</td>
<td>10</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fusilade</td>
<td>fluazifop</td>
<td>0</td>
</tr>
<tr>
<td>Garlon</td>
<td>triclopyr</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>—</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>Gramoxone SL</td>
<td>paraquat</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grazon P+D</td>
<td>2,4-D + picloramb</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>10</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Habitat</td>
<td>imazapyr</td>
<td>8</td>
<td>—</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>—</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Journey</td>
<td>imazapic + glyphosate</td>
<td>—</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>—</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MCPA</td>
<td>MCPA</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>—</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Milestone</td>
<td>aminopyralid</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>—</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Oust</td>
<td>sulfometuron</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>8</td>
<td>7</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Outrider</td>
<td>sulfosulfuron</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Overdrive</td>
<td>dicamba + diflufenzopyr</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>—</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pastureguard</td>
<td>fluoroxypyr + triclopyr</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>—</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>—</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Perspective</td>
<td>aminocyclopyrachlor + chlorosulfuron</td>
<td>9</td>
<td>9</td>
<td>—</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Plateau</td>
<td>imazapic</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Poast Plus</td>
<td>sethoxydim</td>
<td>0</td>
</tr>
<tr>
<td>Pursuit</td>
<td>imazethapyr</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>7</td>
<td>—</td>
<td>4</td>
<td>—</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Redeem</td>
<td>clopyralid + triclopyr</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>10</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Roundup</td>
<td>glyphosate</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>—</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Starane</td>
<td>fluoroxypyr</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>8</td>
<td>—</td>
<td>6</td>
<td>—</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>clopyralid</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>—</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Streamline</td>
<td>aminocyclopyrachlor + metsulfuron</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Telar</td>
<td>chlorosulfuron</td>
<td>8</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Tordon</td>
<td>picloram</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>10</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Weedmaster</td>
<td>2,4-D + dicamba</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>—</td>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Efficacy ratings: 10 = excellent; 8 = good; 6 = fair; 4 = poor; 0 = none; — = insufficient information

aNonselective herbicide: will injure both grasses and broadleaf plants. bRestricted-use product in Wisconsin.
<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Japanese knotweed</th>
<th>Horseweed</th>
<th>Phragmites</th>
<th>Poison hemlock</th>
<th>Purple loosestrife</th>
<th>Queen Anne's lace</th>
<th>Reed canary grass</th>
<th>Spurge, leafy & cypress</th>
<th>Sweet clover, white & yellow</th>
<th>Teasel, cutleaf & common</th>
<th>Thistle, bull</th>
<th>Thistle, Canada</th>
<th>Thistle, marsh</th>
<th>Thistle, plumeless</th>
<th>Wild cherries</th>
<th>Wild pears</th>
<th>Commercial name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>9 7 5 0 9 4 9 0 5 6 8 9 6 9 9 6 9 6 8</td>
<td>— — — — — — — 7 7 — 9 8 — — — —</td>
<td>2,4-D + glyphosate<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Butyrac</td>
<td></td>
</tr>
<tr>
<td>Banvel</td>
<td>9 10 9 0 9 9 10 0 — 9 9 10 10 9 10 10 9</td>
<td>— — — — — — — 0 — 0 — — — — — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Chaparral</td>
<td></td>
</tr>
<tr>
<td>Cimarron Max</td>
<td>9 7 9 0 9 — 10 0 7 6 9 9 7 — 10 10 9</td>
<td>— — — — — — — 9 — 9 — 9 — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Crossbow</td>
<td></td>
</tr>
<tr>
<td>Cimarron Plus</td>
<td>9 7 8 0 7 — 8 0 7 9 7 9 6 9 9 5 5 5 4</td>
<td>— — — — — — — 8 — 9 5 8 —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Curtil</td>
<td></td>
</tr>
<tr>
<td>Cimarron Plus</td>
<td>9 8 0 9 8 10 0 — 6 9 8 7 8 9 9 9</td>
<td>— — — — — — — 8 — 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Escort</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 7 8 9 8 10 9 9 8 5 9 8 6 8 7 8 9 —</td>
<td>— — — — — — — 9 — 9 — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>ForeFront</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 6 4 6 8 — 9 9 9 0 8 9 4 — 7 — 7</td>
<td>— — — — — — — 9 — 9 — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Garlon</td>
<td></td>
</tr>
<tr>
<td>Roundup<sup>a</sup></td>
<td>9 7 8 0 9 — 8 0 9 9 9 10 9 — 10 10 —</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Grass P+D<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>9 7 8 9 8 10 9 9 8 5 9 8 6 8 7 8 9 —</td>
<td>— — — — — — — 9 — 9 — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Habitat<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Stinger</td>
<td>7 6 4 6 8 — 9 9 9 0 8 9 4 — 7 — 7</td>
<td>— — — — — — — 9 — 9 — —</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Journey<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 10 6 0 4 8 6 0 4 9 9 10 10 10 10 —</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Oust<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Outrider</td>
<td>9 7 8 0 9 — 8 0 9 9 9 10 9 — 10 10 —</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Oust<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 7 8 0 9 — 8 0 9 9 9 10 9 — 10 10 —</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Oust<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Overdrive</td>
<td>4 8 — 9 — 6 — 6 9 4 4 — 4 — 4 — 4 —</td>
<td>— — — — — — — 8 — 9 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Pastureguard</td>
<td></td>
</tr>
<tr>
<td>Perspective</td>
<td>7 10 9 4 8 — 10 4 9 10 10 10 10 — 10 10 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>7 10 9 4 8 — 10 4 9 10 10 10 10 — 10 10 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Perspective</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>6 0 4 8 — 9 9 8 0 8 6 4 — 6 — 6</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Plateau</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Pursuit</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>7 9 8 9 7 7 9 9 6 5 9 9 8 7 9 9 8</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>9 4 0 9 — 9 0 4 8 9 9 7 — 9 9 — 9 9</td>
<td>— — — — — — — 8 — 9 9 9 9 9 10</td>
<td>2,4-D + picloramb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>—</td>
<td>Redeem</td>
<td></td>
</tr>
</tbody>
</table>

This table is also published as Herbicide Effectiveness on Invasive Plants in Wisconsin (A3893). To order a sturdy 11” x 17” chart or to download a PDF, go to learningstore.uwex.edu.
Additional resources
The following publications may be purchased from your county Extension office or from Extension Publications. You can order online at learningstore.uwex.edu or call toll-free 877-WIS-PUBS (947-7827).

Corn and soybean
- Corn Earworm (A3655)
- Corn Fertilization (A3340)
- Corn Replant/Late-Plant Decisions in Wisconsin (A3353)
- Corn Rootworms (A3328)
- Corn Silage Production, Management, and Feeding (NCR574)
- European Corn Borer (A1220)
- Herbicide Persistance and Carryover (A3819)
- Herbicide Resistance Management in Vegetable Rotations—poster (A3822)
- Insect Resistance Management and Refuge Requirements for Bt Corn (A3857)
- Moth Identification Guide for Blacklight Trap Catch in Wisconsin (A3855)
- Protect Your Corn from Cranes (A3897)
- Seed Corn Maggot (A3820)
- Two-spotted Spider Mite Management in Soybean and Corn (A3890)
- Uneven Emergence in Corn (NCR344)
- Western Bean Cutworm: A Pest of Field and Sweet Corn (A3856)

Forages and small grains
- Alfalfa Germination and Growth (A3681)
- Alfalfa Management Guide (NCR547)
- Alfalfa Stand Assessment: Is This Stand Good Enough to Keep? (A3620)
- Buying Horse Hay (A3772)
- Determining Pasture Condition (A3667)
- Forage Variety Update for Wisconsin (A1525)
- Identifying Pasture Grasses (A3637)
- Identifying Pasture Legumes (A3787)
- Pastures for Horses: A Guide to Rotational Grazing—CD (A3764)
- Pastures for Profit: A Guide to Rotational Grazing (A3529)
- Wisconsin Oats and Barley Performance Tests (A3874)

Weed management
- Common Weed Seedlings of the North Central States (NCR607)
- Herbicide Effectiveness on Invasive Plants in Wisconsin (A3893)
- Invasive Plants of Wisconsin: Perennial Pepperweed (A3832)
- Weed Identification and Management—DVD (A3829)

Related UW-Extension websites
- Extension Publications: learningstore.uwex.edu
- Agronomy: agronomy.wisc.edu
- Forages: fyi.uwex.edu/forage and www.uwex.edu/ces/forage
- Grains: fyi.uwex.edu/grain
- Insects: labs.russell.wisc.edu/insectlab
- Pesticide Applicator Training: ipcm.wisc.edu/pat
- Plant diseases: labs.russell.wisc.edu/pddc
- Soybeans: fyi.uwex.edu/fieldcroppathology/ and coolbean.info
- Weed identification: weedid.wisc.edu
- Weed science: fyi.uwex.edu/weedsci
- Wisconsin Crop Manager: ipcm.wisc.edu/wcm